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Assuming two quantum states of spontaneous parametric downconversion carrying orbital angular momen-
tum, one may ask the question what is the minimum probability of error in identifying between two of these
biphoton states by an arbitrary physical measurement over the biphoton state generated. While correctly
chosen geometries may lead to perfect distinguishability of modes, it is worth noticing that experimental
subtleties may lead to a poor mode distinguishability. We discuss the case where a restricted range instead
of the needed range of wave vectors is collected by the experimental setup. These considerations may be
useful for some applications, e.g., cryptography. © 2008 Optical Society of America
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Aside from the fundamental importance of under-
standing entangled photon states carrying orbital an-
gular momentum (OAM), these states have practical
applications that include cryptography with a larger
alphabet and potentialities for being used in quan-
tum sensors for rotations and other devices. In physi-
cal cryptography, one may wish to diminish the at-
tacker probability to identify between two states
whereas giving the legitimate users A and B the
means to a clear identification between them. Some-
times, a not well chosen measurement geometry—not
always a trivial choice—may lead to a poor identifi-
cation of states and may even destroy its usefulness.
Helstrom’s bound from information theory, coupled to
basic elements of spontaneous parametric downcon-
version (SPDC), will be applied to states carrying
OAM to study this question. Although this Letter is
not aimed toward a specific application, a cryptogra-
phy setup is proposed and sketched in Fig. 1 just to
make a concrete case for the presented ideas.

A short-pulsed UV laser beam with a Gaussian
profile is reconfigured by an OAM mask to a state
with OAM l. The OAM mask is randomly reconfig-
urable to set one OAM value within M possible ones.
The value l set at each laser pulse is the crypto-
graphic key to be distributed between A and B. This
reshaped UV beam excites a ��2� nonlinear crystal cut
for Type II collinear SPDC. After UV deflection by a
dichroic mirror (DM), the transmitted orthogonally
polarized single and idler photons are separated and
diverted to A and B detection systems. Photons re-
ceived by A and B within a short �t, the pulse dura-
tion time, at time tj, are said to be “in coincidence.” A
randomly reconfigurable OAM mask is used by A be-
fore the detector. The detection system used by B
may consist of an OAM static sorter including inter-
ferometers with Dove prisms (e.g., see [1]) and a
single photon detector at each of the M outputs. The
Dove sorter diverts the incoming photon to the detec-

tor port lB. Over a public channel, A informs B the ob-
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tained value of lA. B obtains l= lA+ lB that, in prin-
ciple, is also known by A. The sequence of distinct l
values obtained after the key distribution session
constitute the shared keys within the “alphabet” of M
possible values.

Even in this idealized setup there is the possibility
of errors by A and B. Assume that B collects the light
signals sent by A in a free propagation scheme and
uses a too small collecting area at the Dove prism
setup. To better understand this problem, consider
the quantized electric field

Ê�+��r,t� = �
k

lE�k�ekâkei�k·r−�kt�, �1�

where ek is the unitary polarization vector and
lE�k�=−i���k / �2�V�. Also, consider the wave vector
decomposition Ul�r , t� of a spatial OAM mode,
Ul�r , t�=�kUk,lei�k·r−�kt�, where Uk,l are unitary ma-
trices transforming between the two representations;
they obey �lUk,lUl,k�

* =�k,k�. Writing lE�k�ekâk

=�k��k,k�lE�k��ek�âk� and replacing it in Ê�+��r , t� one
obtains

Fig. 1. (Color online) Cryptographic setup for quantum
key distribution with OAM. One of the conjugate photons
from SPDC generated with a pump mode with OAM l is
sent from A to the user B. User A randomly detects a pho-
ton with OAM lA; the conjugate photon is sent to B. A Dove
sorter diverts the incoming photon to the detector port lB.
Over a public channel, A informs B the obtained value of lA.
B obtains l= lA+ lB that, in principle, is also known by A; l
becomes a shared key in the OAM alphabet with M

elements.
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This expression reminds one that to obtain a correct
OAM mode a collection of wave vectors has to be al-
lowed by the collecting system. Some experimental
setups may restrict the collection angles to a very
narrow span of wave vectors. One should note that
the angular momentum index is not attached to a
single wave vector k annihilation operator âk but to
ĉl=�k�Ul,k�

* lE�k��ek�âk�, with all wave vectors needed
to describe the involved mode. This Letter looks at
cases where a poor distinguishability is set owing to a
severe restriction on the collected wave vectors. The
minimum probability of error in state identification
is the quantitative measure adopted. A brief descrip-
tion of SPDC will be done before discussing the poor
distinguishability of OAM.

Fundamentals of SPDC have been well studied for
some decades; in a standard description the wave
state is [2]

���t�	 = �0	 + �
	,	�


 d3k�
 d3kAk,	;k�,	�lE
�����k�lE

�����k��

� T�����̃lp��k�â†�k,	�â†�k�,	���0	, �3�

where Ak,	;k�,	� is an amplitude containing the non-
linear susceptibility and unitary polarization vectors
(	 polarized), �̃lp��k�=�VI

d3r�lp�r�exp�−i�k ·r�, and
�lp is the field amplitude in E�
 ,� ,z ; t�
=�lp�r�ei�kPz−�Pt�ê. For a pump beam with OAM l [3],
one has

�lp�
,�,z� =
Alp

�1 + �z/zR�2� 
�2

w�z��l

Ll
p� 2
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w�z�2�
�exp�−
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w�z�2�exp�− i� k
2z

2�z2 + zR
2 �

+ l arctan�y/x�� � exp�i�2p + l

+ 1�arctan�z/zR��. �4�

Ll
p is the associated Laguerre polynomial and 
2=x2

+y2; w�z� is the beam waist in a generic position z; zR
is the Rayleigh range, and T����=exp�i���t
− tint /2��sin���tint /2� / ��� /2� is the time window
function defining the �� range given the interaction
time tint, ��=�k+�k� −�P, �k=k+k�−kP. The spec-
tral function �̃lp��k� is central in defining SPDC and
carries the specific pump mode that excites the non-
linear crystal. Using cylindrical coordinates �
 ,� ,z�,
where dr3=
d�d
dz, the integrals in �
 ,�� in �̃lp��k�

� 2 2
are performed giving [4] �
k= �kx +�ky�
�̃lp��k� = �Alp�i/2�l�zR/kP�1+�l/2�e−il��/2�

� 
k
l Ll

p��zR/kP�
k
2�e−�zR/2kP�
k

2
eil arctan��ky/�kx�
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z0−lc/2

z0+lc/2

e−i�kzze�−1+l+2p�arctan�zR/z�

� ei�1+l+2p�arctan�z/�2zR��dz. �5�

With the usual condition zR lc, one obtains ��
= �zR /kP�
k

2�,

�̃lp��k� = �Alp�− 1�i�i/2�l�lczR/kP�ei�p�−z0�kz�

� eil arctan��ky/�kx�e−�/2�l/2Ll
p���

sin�lc�kz/2�

�lc�kz/2�
.

�6�

��̃lp��k��2 is directly proportional to the crystal prob-
ability to generate signal and idler pairs with wave
vectors k and k�, given the incident pump field
paraxial mode at kP. In this theory, the signal and
idler fields are not limited to paraxial cases.

The problem we are interested in is the faithful
discrimination between two SPDC states generated
by two distinct pump modes set at �l ,p� or �l� ,p��.
Specification of the maximum of ��̃lp��k��2 (phase
matching), although being given for the variables �
and �kz, imply correlated structures in the signal
and idler wave vector space [4]; � can also be seen as
a constraint over variables �k ,k� ,� ,��� imposed by a
phase match in the nonlinear medium. The (appar-
ent) simplicity of ��̃lp��k��2 allows us to divide the
phase-matching problem into longitudinal and trans-
verse conditions, namely, sin�lc�kz /2� / �lc�kz /2��1,
value at �kz=0, assumed within a width of �kz
�2� / lc (longitudinal condition) and e−�t�t

lLl
p��t�2

=maximum (transverse condition); �t is the value of �
that maximizes e−��lLl

p���2. The compact variable �
connects the signal and idler transverse wave vectors
as well as their dependence on the refractive indices
in the medium. These dependences can be simple, as
in Type I SPDC, or more complex, as in Type II SPDC
(details can be seen in [4]).

Interference filters can provide a good degree of
monochromaticity to signal and idler photons from
SPDC. Their net effect on the SPDC spectrum will be
described by the simplified filtered wave state (con-
sider p=0), where the variables are taken around
phase match points designated by the index pm:

���t�	 = sin �pm� kpm�
2 sin �pmkpm

2Akpm;kpm�
lE

�����kpm
�

�lE
�����kpm�

��̃l0��kpm�âl−l�
† �kpm�âl�

† �kpm� ��0	.

�7�

A too restricted collection of wave vectors among the
allowed ones by Eq. (7) may cause that one photon in
state �11	 could not be distinguished from another one
in state �12	, where indices 1 and 2 designate two dis-

tinct OAM values for a downconverted photon, be-
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coming simply a detected photon �1pm	 around the
phase-matching region. One may use analytical re-
sults from [4] modified to stress that this point
�̃lp��k�, written around the longitudinal phase
match condition and assuming this poor distinguish-
ability condition, is

�̃lp��k� = �−
�

2l i
l+1lcAlp

zR

kP
eil arctan��ky/�kx��

� e−�/2�l/2Ll
p����1pm	�1pm� 	

� glp��kx,�ky,0�e−�/2�l/2Ll
p����1pm	�1pm� 	.

�8�

Normalization of �̃lp��k� can be imposed by stating
that a signal and idler pair will be found on the
transverse plane. The phase term eil arctan��ky/�kx� can
be simplified using degenerate SPDC that is ex-
pressed by 
=
�, where 
=k sin � and 
�=k� sin ��
for k�k� and ����: eil arctan��ky/�kx�→ il. Therefore, for
degenerate SPDC, the normalized amplitude is

�̃lp��k�n = �̃lp���n = i�− 1�l
e−�/2�l/2Ll

p���

��0
�e−��lLl

p���2d�
. �9�

One should also observe that other peculiarities may
decrease efficiency in OAM detection and are not re-
lated to a poor collection system. It should be recalled
that the OAM l is assigned to the biphoton as a whole
[5,6]. A specific value l� of OAM may be assigned to
one of the photons by means of OAM filters; in this
case the conjugate photon takes the remaining OAM:
l− l�. Depending on the symmetry of the medium,
OAM does not show perfect conservation; this has
been discussed in the literature (see details in [4]).
This nonconservation possibility is not connected
with the indistinguishability degree discussed in this
Letter.

Fig. 2. (Color online) Pe in binary identification of La-
guerre wave states with total biphoton angular momenta l1
and l2 under poor collecting conditions.
One should emphasize that usually cryptographic
schemes do not repeat emissions of a given signal to
avoid giving advantages to the eavesdropper. Con-
sider that a single photon is contained at each laser
pulse and that a specific wave vector is attached to
the photon. As discussed, the signature, say l�, of an
OAM mode will not be attached to this single photon.
In cases where the collected downconverted photons
are wave vector identifiable leads to �1l�	→ �1pm	 and
�1l−l�	→ �1pm	. In these cases, wave state overlap be-
tween two states indexed by lj and lk will only be
specified by overlap of the probability amplitudes,
namely,

��ljpj
��lkpk

	 → 

0

�

�̃ljpj
���n�̃lkpk

���nd�. �10�

Helstrom’s bound [7] applies to a binary decision be-
tween two pure arbitrary states ��0	 and ��1	. Pe is
given by

Pe = 1
2 �1 − �1 − 4p0p1���0��1	�2�. �11�

Figure 2 exemplifies the minimum probability of
error in state determination between Laguerre
modes with total angular momenta l1 and l2 with val-
ues in the interval l= �1,20� when collecting systems
are too restrictive for wave vectors. Equation (10)
was used in Pe as given by Eq. (11) and taking the a
priori probabilities p0=p1=1/2. The possibility for
wave vector identification due to a poorly designed
setup leads to a large fraction of uncontrollable er-
rors by A and B and may easily render the system
useless. Summarizing, quite general wave states de-
scribing SPDC with OAM were particularized to
demonstrate how indistinguishability between OAM
modes can be set.
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