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Unified theory of ghost imaging with Gaussian-state light
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The theory of ghost imaging is developed in a Gaussian-state framework that both encompasses prior
work—on thermal-state and biphoton-state imagers—and provides a complete understanding of the boundary
between classical and quantum behavior in such systems. The core of this analysis is the expression derived for
the photocurrent-correlation image obtained using a general Gaussian-state source. This image is expressed in
terms of the phase-insensitive and phase-sensitive cross correlations between the two detected fields, plus a
background. Because any pair of cross correlations is obtainable with classical Gaussian states, the image does
not carry a quantum signature per se. However, if the image characteristics of classical and nonclassical
Gaussian-state sources with identical autocorrelation functions are compared, the nonclassical source provides
resolution improvement in its near field and field-of-view improvement in its far field.
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I. INTRODUCTION

Ghost imaging is the acquisition of an object’s transverse
transmittance pattern by means of photocurrent correlation
measurements. In a generic ghost-imaging experiment (see
the example in Fig. 1), a classical or quantum source that
generates two paraxial optical fields is utilized. These fields
propagate in two different directions, through a linear system
of optical elements that may include lenses and mirrors, and
arrive at their respective detection planes. At one detection
plane, the incident field illuminates a thin transmission mask,
whose spatial transmissivity is the pattern to be measured
and is subsequently detected by a bucket detector that pro-
vides no transverse spatial resolution. At the other detection
plane, the incident field, which has never interacted with the
transmission mask, is detected by a pinhole detector centered
at some transverse coordinate p;. The two photocurrents are
then correlated and the output value is registered. This pro-
cess is repeated as the pinhole detector is scanned along the
transverse plane. The resulting correlation measurements,
when viewed as a function of p;, reveal the power transmis-
sivity of the mask. The image obtained by this procedure has
been called a “ghost image,” because the bucket detector that
captures the optical field which illuminated the transmission
mask has no spatial resolution and the pinhole detector mea-
sures a field that never interacted with the transmission mask
[1].

The first demonstration of ghost imaging utilized
biphoton-state light obtained from spontaneous parametric
down-conversion together with photon-counting bucket and
pinhole detectors. This arrangement yielded a background-
free image that was interpreted as a quantum phenomenon,
owing to the entanglement of the source photons [2]. How-
ever, subsequent experimental [3,4] and theoretical [5,6]
considerations demonstrated that ghost imaging can be per-
formed with thermalized laser light, utilizing either photon-
counting detectors or CCD detector arrays to obtain ghost
images, albeit with a background.
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The theory of biphoton ghost imaging requires quantum
descriptions for both the optical source and its photodetec-
tion statistics, whereas thermal-light ghost imaging admits to
a semiclassical description employing classical fields and
shot-noise-limited detectors. This disparity has sparked inter-
est [7-10] in establishing a unifying theory that characterizes
the fundamental physics of ghost imaging and delineates the
boundary between classical and quantum behavior. In this
paper we develop that unifying theory within the framework
of Gaussian-state (classical and nonclassical) sources.

The foundation of our work is laid in Sec. II. Here we
begin by expressing the photocurrent cross correlation—the
ghost image—as a filtered fourth moment of the field opera-
tors illuminating the detectors. Next, we briefly review the
quantum-optics definition of classical states and specialize
that discussion to zero-mean Gaussian states. Then, using the
moment-factoring theorem for zero-mean Gaussian states,
we obtain our fundamental expression for the Gaussian-state
ghost image in terms of the phase-insensitive and phase-
sensitive cross correlations between the two detected fields,
plus a background. The final part of Sec. II sets the stage for
detailed understanding of ghost imaging by extending the
standard theory of coherence propagation to include phase-
sensitive field states.
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FIG. 1. (Color online) A simple ghost-imaging setup.
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Section III analyzes ghost imaging performed with
three classes of Gaussian-state sources. We first consider a
source possessing the maximum phase-insensitive cross
correlation—as  constrained by its  autocorrelation
functions—but no phase-sensitive cross correlation. Such a
source always produces a classical state. Thermal light is of
this class. We also consider a source with the maximum clas-
sical phase-sensitive cross correlation, given the same auto-
correlations as in the previous case, but no phase-insensitive
cross correlation. Finally, we treat the latter source when its
phase-sensitive cross correlation is the maximum permitted
by quantum mechanics. The low-brightness, low-flux limit of
this quantum source is the biphoton state. Thus these source
classes span the experiments reported in [2—4] within a uni-
fied analytical framework while admitting classical phase-
sensitive light as a new possibility. In Sec. IV we discuss the
image-contrast behavior that is obtained with these sources,
and in Sec. V we generalize the configuration of Fig. 1 to
allow for a nonzero separation between the transmission
mask and the bucket detector. We conclude, in Sec. VI, with
a discussion of the ghost-imaging physics that has been re-
vealed by our analysis.

II. ANALYSIS

Consider the ghost-imaging configuration shown, using
quantum field and quantum photodetection notation, in Fig.
1. An optical source generates two optical fields, a signal

Eg(p.t)e” and a reference Eg(p,f)e™™, that are scalar,
positive-frequency, paraxial field operators normalized to
have units \s"photons/m2 s. Here, wy is their common center
frequency and p is the transverse coordinate with respect to
each one’s optical axis. The commutation relations, within
this paraxial approximation, for the base-band field operators
are [11]

[E,(p1.11), Ee(psy1)]1 =0, (1)

[En(p1o 1) Ef(part)] = 8,00y — p) 81, — 1), (2)

where 6, ¢ is the Kronecker delta function, m,{=S,R, and
S(-++) is the unit impulse. Both beams undergo quasimono-
chromatic paraxial diffraction along their respective optical
axes, over an L-m-long free-space path, yielding detection-
plane field operators [11]

@@ﬁ=fdﬂﬁAﬂJ—Udh@—ﬂL (3)

where (€,m)=(1,S) or (2,R), c is the speed of light, & (p) is
the Huygens-Fresnel Green’s function,

. 2
ko ezko(u\p\ /2L)
h =", 4
L(p) Dl 4)
and ky=wq/c is the wave number associated with the center

frequency. At the detection planes, El(p,t) illuminates a
quantum-limited pinhole photodetector of area A; whose
photosensitive region p&€ A, is centered at the transverse
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FIG. 2. (Color online) Photodetection model.

coordinate p;, while E,(p,f) illuminates an amplitude-
transmission mask T(p) located immediately in front of a
quantum-limited bucket photodetector with photosensitive
region pE A,.

The photodetectors are assumed to have identical sub-
unity quantum efficiencies and finite electrical bandwidths,
but no dark current or thermal noise (from subsequent elec-
tronics) contributes to the output current. Figure 2 shows the
model utilized for the photodetectors, in which a beam split-
ter with field transmissivity 7 precedes an ideal photodetec-
tor to model the real detector’s subunity quantum efficiency
and a low-pass filter with a real impulse response hg(t) fol-
lows the ideal photodetector to model the real detector’s fi-
nite electrical bandwidth. It follows that the classical output
currents from the two detectors correspond to the following
quantum measurements [ 12—14]:

(1) =g f du f dp E},,(p.w)E . (p.w)hy(t—u), (5)
‘Am

for m=1,2, where ¢ is the electron charge,

E,.(p.1)
~a [
_ \”nE’"(p’t) A nEuac,pn(p7t), m=1
- A —_—
VIT(P)E, (1) + N1 = g T(P)PE e lp.r). m=2.

(6)

and Euac,m(p’t) is a vacuum-state field operator.

The ghost image at transverse location p; is formed by
time-averaging the product of the detector photocurrents to
obtain an estimate of the ensemble-average equal-time pho-
tocurrent cross-correlation function, which is given by

Clp) = <;1(f);2(t)> =g’ 7A,
Xf dpf d”lJ dushp(t = up)hy(t — uy)| T(p) |
Ay

X(E (prou) ES(pur) Ey(pru) Ex(poy)),  (7)

where we have approximated the integral over the pinhole
detector’s photosensitive region as the value of the integrand
at p; times the photosensitive area A;.

So far, we have opted for the quantum description of our
ghost-imaging configuration, because it applies equally well
to both classical-state and nonclassical-state sources. For the
former case, however, we could have arrived at an equivalent
answer by use of semiclassical theory. In particular, for a
classical-state source we could replace the field operators
with scalar classical electromagnetic fields, then employ sca-
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lar diffraction theory plus the shot-noise theory for photode-
tection to arrive at the photocurrent correlation expression in
Eq. (7), but with the field-operator fourth moment replaced
by a classical-field fourth moment. Because a principal goal
of this paper is to identify the classical-quantum boundary in
ghost imaging, it is incumbent upon us to first review the
quantum-mechanical states that can generate photocurrent
correlations which cannot be obtained from classical electro-
magnetism and shot-noise theory.

A. Semiclassical versus quantum photodetection

Consider the ideal photodetector from Fig. 2—i.e., one
with unity quantum efficiency, zero dark current, and infinite
electrical bandwidth—for which individual photon detection
events are registered instantaneously as current impulses car-
rying charge g. In semiclassical theory, the scalar optical
field impinging on the photosensitive surface of the photode-
tector is a positive-frequency classical electromagnetic wave,
denoted by E(p,t)e~'®0". In accordance with the quantum de-
scription above, we assume that this field is paraxial, normal-
ized to have units \photons/m? s, and has center frequency
wy. Conditioned on knowledge of the field impinging on the
photodetector, we have that i(f)/q, is an inhomogeneous
Poisson impulse train with rate function [15,16]

g (8)

) = J dp|E(p1)
A

where A is the detector’s photosensitive region. Thus, re-
gardless of whether the illuminating field is deterministic or
random, the photocurrent is subject to the noise that is inher-
ent in this Poisson process, which yields the well-known
shot-noise floor of semiclassical photodetection theory [13].
Randomness in the illumination is then accounted for by
taking E(p,7) to be a stochastic process, as is done in clas-
sical statistical optics [17].

In the quantum theory of photodetection, the classical
photocurrent produced by the same ideal photodetector is a
stochastic process whose statistics coincide with those of the
photon-flux operator measurement scaled by the electron
charge [12]:

(=g L dp E'(p,0E(p,1). 9)

The photocurrent statistics are then governed by the state of

the field operator E(p,t), so the shot-noise limit of semiclas-
sical theory can be surpassed by some states, such as
amplitude-squeezed states or the eigenkets of continuous-
time photodetection [12,13,18].

In our quantum treatment of ghost imaging, the states of

the optical field operator E(p,?) that we shall deem classical
are those for which the measurement statistics predicted by
quantum photodetection theory match those predicted by the
semiclassical theory. It has long been known [12,13] that

when E(p,t) is in the coherent state |E(p,t)), indexed by its
eigenfunction E(p,7) and satisfying
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E(p,0)|E(p,1)) = E(p,0|E(p,1)), (10)

the statistics of the zA(t) measurement are identical to those
from the semiclassical theory with the impinging classical
field taken to be E(p,1). More generally, the two photodetec-
tion theories yield identical statistics for any quantum state
that is a classical statistical mixture of coherent states—viz.,
for all states that have proper P representations [19]—when
the classical field used in the semiclassical theory is com-
prised of the same statistical mixture of the coherent-state
eigenfunctions [13,20,21]. Moreover, mixtures of coherent
states are the only quantum states for which all quantum
photodetection statistics coincide with the corresponding re-
sults found from the semiclassical theory.

The quantum and semiclassical theories of photodetection
accord very different physical interpretations to their funda-
mental noise sources—quantum noise of the illuminating
field versus shot noise arising from the discreteness of the
electron charge—but for quantum states with proper P rep-
resentations their predictions are quantitatively indistinguish-
able. So, because the correlation measurement at the heart of
ghost imaging is a derived statistic from two photodetection
measurements, the quantum theory of ghost imaging using
states that have proper P representations is equivalent to the
classical theory of ghost imaging using (classical) random
optical fields plus shot-noise detection theory. Therefore, any
truly quantum features of ghost imaging must be exclusive to
optical field states that do not possess proper P representa-
tions.

B. Jointly Gaussian states

Gaussian states offer both a practically relevant and a
theoretically convenient framework for studying ghost imag-
ing. Their practical relevance stems from thermal states and
the biphoton state being special instances of Gaussian states.
Their theoretical convenience arises from their being com-
pletely determined by their first and second moments, and
from their closure under linear transformations. Moreover, as
noted in Sec. I, Gaussian-state sources span the experiments
reported in [2—4] and admit to the additional case of classical
phase-sensitive light. Hence they provide an excellent unify-
ing framework within which to probe the distinction between
quantum and classical behavior in ghost imaging.

Because the experiments in [2-4] employed zero-mean

states, we shall assume that Es(p,t) and ER(p,t) are in a
zero-mean, jointly Gaussian state; i.e., the characteristic
functional of their joint state has a Gaussian form [13] speci-
fied by the (normally ordered) phase-insensitive autocorrela-

tions and cross correlations (Ejn(pl,tl)ée(pz,tz» and the
phase-sensitive autocorrelations and cross correlations

(E,(p1.1))E¢(ps.1,)), where m,€=S,R. Because the experi-
ments in [2-4] employed states whose phase-sensitive
autocorrelations were zero, we shall assume that
(Ep(p11))E,(pr.15))=0 for m=S,R. Finally, to simplify our
analytical treatment, while preserving the essential physics
of ghost imaging, we shall assume that the signal and refer-
ence fields are cross-spectrally pure, complex stationary, and
have identical autocorrelations: i.e.,
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(E! (p1.t)E(py12)) = K™(p1,p)R™ (1, - 17), (1)
(E¥(p1.t) E(pyity)) = Ki(pr.p) RUK (1~ 1), (12)

(Es(p1.1))Ex(pa.ty)) = K(s?;e(Pl’Pz)R(slfl)e(tz -1), (13)

for m=S,R, where the superscripts (n) and (p) label nor-
mally ordered (phase-insensitive) and phase-sensitive terms,
respectively. For convenience and with no loss of generality,
we shall assume that

R"(0) = R'}(0) = R¥}(0) = 1. (14)

With the exception of the behavior of a background term,
the physics of ghost imaging will be shown to arise entirely
from the spatial terms in the preceding correlation functions.
These will be taken to have Schell-model forms [19]

K(n)(Pl,Pz) =A*(P1)A(P2)G(n)(P2—P|), (15)
K(sr,l}e(Pl P) = A*(PI)A(Pz)G(Sr,l;e(Pz -p)), (16)
KZX(p1.po) = Alp)A(p)GL(pr = py). (17)

with |A(p)|=1, so that this function may be regarded as a
(possibly complex-valued) pupil function that truncates sta-
tistically homogeneous random fields with phase-insensitive
autocorrelatlons G"(p,—p,), phase-insensitive cross corre-
latlons Gs R(p2 p1), and phase-sensitive cross correlations
Gs R(p2 p1). We shall also assume that G™(p) is a real-
valued even function of its argument [22]. Our task, in the
rest of this subsection, is to establish the correlation-function
bounds that distinguish between classical and quantum be-
havior for the preceding jointly Gaussian states.

Let us begin with Gaussian-state signal and reference
fields that have only phase-insensitive correlations; i.e., as-

sume that (Eg(py.t;)Eg(ps.1,))=0. Then, the phase-

insensitive correlation spectra, given by the three-
dimensional Fourier transforms
2"k, Q) = HG" (pR™ (1)}, (18)
g5k(k, Q) = F{GYR(PIRSR(D}, (19)
85,R\ES P)Ks
must satisfy [13,20] the Cauchy-Schwarz inequality
&5k k. Q)] = g (k. Q) (20)

from stochastic process theory [23]. Because the correlation
spectra in (20) fully determine the zero-mean, phase-
insensitive, Gaussian state we are considering, this inequality
is both necessary and sufficient to conclude (via the equiva-
lence developed in Sec. I A) that all phase-insensitive
Gaussian states have proper P representations and are there-
fore classical [24]. The 50-50 beam splitting of a continuous-
wave laser beam that has first been transmitted through a
rotating ground-glass diffuser—as was done in the experi-
ments of [3,4]—yields signal and reference fields that are in
a zero-mean, phase-insensitive, jointly Gaussian state in
which (20) is satisfied with equality.

PHYSICAL REVIEW A 77, 043809 (2008)

Now let us examine the more interesting case in which the
zero-mean Gaussian-state signal and reference fields have a
nonzero phase-sensitive cross correlation, but no phase-
insensitive cross correlation. Here we will find that their joint
state need not have a proper P representation; viz., the state
may be nonclassical. We have that the phase-sensitive cross-
correlation spectrum of the signal and reference fields,

g0k, Q) = HGLHp)REND}, (1)
satisfies [13,20]

800, Q) =1+ 37, D)]E" K, Q),  (22)

whereas the Cauchy-Schwarz inequality for the phase-
sensitive cross-correlation spectrum of a pair of classical sto-
chastic processes imposes the more restrictive condition
[13,20]

|0kk, Q)] = g7 (K, Q). (23)

Zero-mean Gaussian states whose phase-sensitive cross-
correlation spectra satisfy (23) have characteristic functionals
consistent with that of a pair of classical stochastic processes.
Hence these states have proper P representations and are
therefore classical. On the other hand, zero-mean Gaussian
states whose phase-sensitive cross-correlation spectra violate
(23) have characteristic functionals that are inadmissible in
stochastic process theory and are therefore nonclassical. In
short, equality in (23) constitutes a well-defined boundary
between classical and nonclassical zero-mean Gaussian
states.

The difference between inequalities (22) and (23) has a
simple physical origin. Both derive from the fact that linear
combinations of signal and reference fields have non-
negative measurement variances. In the quantum case, how-
ever, the variance calculation leading to (22) must invoke the
field-operator commutators, whereas the derivation of (23)
has no such need. (Note that commutator issues do not arise
in deriving (20), which is why this inequality is the same for
the quantum and classical cases.) The upper bounds in (22)
and (23) are similar for g"(k,2)> 1. Thus it might seem
that there is little distinction between classical and quantum
Gaussian states in this limit. While this will be seen below to
be so for ghost imaging (when background is neglected),
50-50 linear combinations of the signal and reference fields
will be highly squeezed—thus highly nonclassical—when
g"(k,Q)>1. At the other extreme, for "(g "(k,0)<1, the
quantum upper bound is approximately vz (k,()), which is
significantly greater than the classical upper bound
g"(k,Q). The phase-insensitive correlation spectrum
" (k,Q) specifies the brightness of the signal and reference
fields in units of photons. Thus g™ (k,Q)<1 is a low-
brightness condition. In this regime we will see that there are
appreciable differences between the ghost image formed
with classical phase-sensitive light and quantum phase-
sensitive light.

Spontaneous parametric down-conversion (SPDC), which
was used in the original ghost-imaging experiment [2], pro-
duces signal and reference fields that are in a zero-mean
jointly Gaussian state with no phase-insensitive cross corre-
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lation and no phase-sensitive autocorrelation, but with a
phase-sensitive cross correlation that saturates the upper
bound in (22). Furthermore, for continuous-wave SPDC op-
erating at frequency degeneracy, this state is a two-field
minimum-uncertainty-product pure state, generated by the
Bogoliubov transformation [25,26]

Es(k,Q) = M(k, Q)E; (k,Q) + V(k, Q)E} (—k,- Q),
(24)

Ex(—k,— Q) = M(k, Q) Ep (- k,— Q) + V(k, VE] (k,Q)
(25)

of the vacuum-state input fields E s, and ERU, where the trans-
fer functions satisfy [M(k,Q)|>~|V(k,Q)[*=1 to preserve the
free-field commutator relations given in (1) and (2).

In the low-brightness, low-flux regime, wherein
gk, Q)<1, gf&(k,ﬂﬂ ~\g"(k,Q) and at most one
signal-reference photon pair is present in the electrical time
constant of the ghost imager’s photodetectors, the first- and
second-order moments of this Gaussian state match those
obtained from the unnormalizable pure state comprised of a
superposition of a dominant multimode vacuum and a weak
biphoton component [25]: i.e.,

It//>=|0>s|0>R+fdkf Q)

X \r’§<")(k,9)e’¢(k’m

k. Q)sl-k,~ D, (26)

where ¢(k,Q)= 4(§gf}e(k,ﬂ) and |0)5|0), is the multimode
vacuum state of the signal and reference. In the biphoton
term, |k,{))s denotes the single-photon signal-field state with
transverse wave vector k and frequency detuning ) from
degeneracy; a similar interpretation applies to the reference-
field state |-k,—{Q)g. So, because the pure state given in Eq.
(26) is the low-brightness, low-flux equivalent of the zero-
mean jointly Gaussian state with maximum phase-sensitive
cross correlation and no phase-insensitive cross correlation,
it is clear that Gaussian-state analysis encompasses the pre-
vious biphoton treatments of ghost imaging using SPDC.

As a final point about jointly Gaussian states, let us note
how one may obtain classical phase-sensitive cross correla-
tions between the signal and reference fields. Such fields can
be generated by imposing complex-conjugate zero-mean
Gaussian-noise modulations, in space and time, on the fields
obtained by 50-50 beam splitting of a continuous-wave laser
beam. This saturates the upper bound in (23), because the
resulting joint state is a Gaussian statistical mixture of the
coherent states |E(p,?))s|E*(p,t))g. Existing modulator tech-
nology will limit the bandwidth achievable with such an ar-
rangement to tens of GHz. Substantially broader bandwidths
might be realized by exploiting the classical (high-photon-
flux) limit of nonlinear processes that generate phase-
conjugate beams [27].

C. Coherence propagation

The previous subsection laid out the statistical source
models that we shall employ in our ghost-imaging analysis;
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it was grounded in the second moments of the source-plane

field operators E ¢ and ER that completely characterize their
zero-mean, jointly Gaussian state. However, our expression
for the photocurrent correlation C(p,) in the Fig. 1 ghost-
imaging configuration is given by Eq. (7), which requires a
fourth moment of the detection-plane field operators E 1 and

Ez. These detection-plane operators result from L-meter free-
space propagation of the source-plane operators, as given by
Eq. (3). Jointly Gaussian states remain jointly Gaussian un-
der linear transformations, such as Eq. (3), and zero-mean
states remain zero-mean as well. Thus, free-space diffraction
over the L-meter-long propagation paths transform the zero-
mean, jointly Gaussian state of the source, with correlation
functions given in Egs. (11)-(13), into a zero-mean, jointly
Gaussian state at the detection planes whose correlation
functions are cross-spectrally pure and given by

(EN (p1t)E(p212)) = K7 (pr,p) RVt - 1,),  (27)

<El(P1,11)E2(Psz)> = K%(Pbpz)R%(fz -1). (28)

In these expressions,

Kl(;’){{(pl’pz) = f dpif dpé K,(,:r)’gr(pi’pé)

Xhi(m - Pi)hL(Pz - Pé) > (29)

Xhi(p1=p)hi(pr = p), (30)

for (m,m')=(1,S) or (2,R) and likewise for ({,{"). Also, the
temporal correlation behavior is unaffected by propagation,
because the quasimonochromatic quantum Huygens-Fresnel
principle, Eq. (3), only involves delay in time. It follows that
the fundamental difference between the propagation of
phase-insensitive and phase-sensitive correlation functions is
the lack of conjugation in the propagation kernel of the latter,
something which is responsible for the propagation charac-
teristics reviewed in Sec. II D [28].

Previous work on biphoton imaging has shown that the
biphoton state propagates through free space in the same
manner shown above for the phase-sensitive cross-
correlation function [29]. This is not coincidental. We know
from Eq. (26) that the biphoton wave function is the phase-
sensitive cross correlation between signal and reference
fields with maximum phase-sensitive cross correlation in the
low-brightness, low-flux limit. For more general Gaussian
states—which can have arbitrary brightness and photon flux
and can be classical or nonclassical—it is necessary to con-
sider the propagation of the phase-sensitive cross-correlation
function.

Having related second moments of the detection-plane
fields to their source-plane counterparts, we still need to find
a fourth moment of those detection-plane fields in order to
evaluate Eq. (7). For zero-mean jointly Gaussian states this
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step is easy. From the Gaussian moment-factoring theorem
[19] we find that the fourth-order moment in Eq. (7) is given
by

(E(pruy) ES(p,un) Ey(pyouy) Ex(p,us))
= <EI(P1,u1)El (Pla’h))(EZ(Pa Mz)éz(lhuz»

+ |<E-{(P1,M1)Ez(l’»uz)>|2 + |<E1(P1,M1)52(P5M2)>|2-
(31)

Substituting Eq. (31) into Eq. (7), along with Egs. (27) and
(28), simplifies the photocurrent cross-correlation expression
to

C(p)) =Co(p) +C, f dplK{)(pr.p) | T(p)]?

Ay

% (32)

+C, f dplKP)(p1.p)|*|T(p)
A

2

where
2
Colpy) = > AR (0)R8}5(0>< J hB(t)dt)

XK (p1,py) f dp K$Y(p.p)|T(p)|>  (33)
Ay

is a non-negative non-image-bearing background and

Co= P TPARD D * hg(0) # hy(= D] (34)

and

Cp = TAIRDYO * hy(0) 5 hy(=D]cg  (35)
are constants that depend on the temporal cross correlations

between 12"1 and Ez. Here “*” denotes convolution.

The image-bearing term in C(p,) is seen, from Eq. (32),
to be the object’s intensity transmission profile |T(p)|* fil-
tered through a linear, space-varying filter whose point-
spread function is given by a weighted sum of the squared
magnitudes of the phase-insensitive and phase-sensitive
cross-correlation functions at the detection planes. In
thermal-state ghost imaging, the phase-sensitive term van-
ishes, so that the point-spread function depends only on the
phase-insensitive cross correlation. In biphoton-state ghost
imaging, the phase-insensitive cross correlation is zero, thus
yielding an image filter that depends only on the phase-
sensitive cross correlation. For general Gaussian-state signal
and reference fields, however, both cross correlations con-
tribute to the image filter.

Because the image-bearing part of Eq. (32) only depends
on the cross correlations between the detected fields, whereas
the non-image-bearing background depends only on the
phase-insensitive autocorrelations, it is germane to note (see
the Appendix) that any pair of phase-insensitive and phase-
sensitive cross-correlation functions can be associated with a
classical zero-mean jointly Gaussian state by appropriate
choices of its phase-insensitive autocorrelation functions.
Thus, if no constraint is placed on the background level in
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which the image is embedded—i.e., if the autocorrelation
functions are not constrained—any image-bearing term at-
tainable from Eq. (32) with a nonclassical Gaussian-state
source can be replicated identically by a classical Gaussian-
state source. Hence, ghost-image formation is intrinsically
classical.

D. Near-field versus far-field propagation

Here we review the main results for paraxial, quasimono-
chromatic, phase-insensitive and phase-sensitive coherence
propagation through free space [28] that will be combined, in
the next section, with Eq. (32) to identify the imaging prop-
erties of the Fig. 1 configuration. Because Egs. (29) and (30)
show that propagation only affects the correlation functions’
spatial components, we shall focus exclusively on them. In
order to highlight the difference between the propagation of
phase-insensitive and phase-sensitive coherence, we shall
consider (real and even) Gaussian-Schell model spatial
cross-correlation functions for both; i.e., we assume [30]

2P 200 12142 2 2
K(s)f}e(l)l,l’z) = ge—(\m\ ool Vag-lor = pil72605 (36)
0

for x=n,p, where P is the photon flux of the signal (and
reference), aj is the ¢~2 attenuation radius of the transverse
intensity profile, and p, is the transverse coherence radius,
which is assumed to satisfy the low-coherence condition p,
<a0.

We compare phase-insensitive and phase-sensitive corre-
lation propagation in two limiting regimes: the near field,
which corresponds to the region in which diffraction effects
are negligible, and the far field, in which diffraction spread is
dominant. For phase-insensitive coherence propagation, it is
well known that a single Fresnel number Dy=kypga,/2L dis-
tinguishes between these regimes, with Dy> 1 corresponding
to the near field and D,<<1 being the far field [17,19]. Note
that this Fresnel number differs from that for the diffraction
of a coherent laser beam with intensity radius a,, which is
DC(,,,:koaé/ 2L. This difference reflects the coupling between
coherence radius and intensity radius that occurs in free-
space diffraction of partially coherent light. In particular, far-
field propagation of the phase-insensitive correlation func-
tion from Eq. (36) results in an intensity radius satisfying
ap=ag/Dy=2L/kyp, and a coherence radius given by p;
=po/Dy=2L/kyay; i.e., the far-field intensity radius is in-
versely proportional to its source-plane coherence length and
the far-field coherence length is inversely proportional to the
source-plane intensity radius.

The phase-sensitive correlation function from Eq. (36)
propagates in a distinctly different manner from its phase-
insensitive counterpart. In this case we find that coherence-
radius diffraction and intensity-radius diffraction are decou-
pled [28]. Two Fresnel numbers are then required to
distinguish the near field from the far field: the Fresnel num-
ber for diffraction of the coherence length, DN=kOpS/ 2L; and
the Fresnel number for diffraction of the intensity radius,
DF=k0aS/2L. The near-field regime for phase-sensitive cor-
relation propagation occurs when both Fresnel numbers are
much greater than 1, and the far-field regime is when both
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FIG. 3. (Color online) Isocontours corresponding to the

e~2-attenuation levels for the phase-sensitive and phase-insensitive
correlation functions in the near-field and the far-field regimes.

are much less than 1. Because we have imposed the low-
coherence condition py<<a,, we can say that the near-field
regime for phase-sensitive coherence propagation is Dy> 1
and its far-field regime is Dr<< 1. Each of these conditions is
more stringent than the corresponding condition for phase-
insensitive light. Nevertheless, the far-field propagation of
the Gaussian-Schell model phase-sensitive correlation func-
tion from (36) yields p,/ D, for the far-field intensity radius
and ay/D, for the far-field coherence radius. However,
whereas the far-field phase-insensitive correlation is highest
for two points with equal transverse-plane coordinates, the
far-field phase-sensitive correlation is highest for two points
that are symmetrically disposed about the origin on the trans-
verse plane [28,29].

Figure 3 highlights the difference between propagation of
the phase-insensitive and phase-sensitive correlation func-
tions from Eq. (36). In this figure we have plotted the
e~2-attenuation isocontours for |K’ S’f%(pl ,Py)|, for x=n,p, ver-
sus the sum and difference coordinates p,=(p,+p;)/2 and
Ps=p,—p;. All transverse-coordinate pairs that correspond
to the interior region of a contour are both coherent and
intense. From Eq. (36), it is straightforward to verify that all
magnitude isocontours of our Gaussian-Schell model corre-
lations are ellipses. In the near field, because of our low-
coherence assumption, the ¢ 2-attenuation isocontours—for
both the phase-insensitive and the phase-sensitive correlation
functions—have their minor axes along the difference coor-
dinate. In the far field, we find that diffraction leads to iden-
tical increases along the major and minor axes of the phase-
insensitive correlation’s e~2-attenuation isocontour. For the
corresponding far-field phase-sensitive correlation’s isocon-
tour we get inverted behavior, with its minor axis now
aligned with the sum coordinate and its major axis along the
difference coordinate. Thus, the far-field phase-insensitive
correlation function is dominated by a narrow function in the
difference coordinate |p,|, whereas the far-field phase-
sensitive correlation function is a narrow function in the sum
coordinate |p,|.
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III. NEAR- AND FAR-FIELD GHOST IMAGING
WITH GAUSSIAN-STATE LIGHT

We are now fully equipped to compare the ghost-imaging
performance achieved in the configuration in Fig. 1 with
various Gaussian-state sources. We shall assume that the sig-

nal and reference fields E s and E g are in a zero-mean, jointly
Gaussian state with identical phase-insensitive autocorrela-
tions given by the following Gaussian-Schell model:

K" (py,p)R™ (1, — 1))

= 2—P2e—(|ﬂ1\2+\pz\2)/aé—\t’z = 017120512 - ;,)2/27%)’ (37)

mag

where py<<a, T is the coherence time, and P is the photon
flux. We will begin our treatment with the thermal-state
source, for which the signal and reference have a nonzero
phase-insensitive cross correlation, but no phase-sensitive
cross correlation. As noted in Sec. II B, such states are al-
ways classical.

A. Ghost imaging with phase-insensitive light

Consider jointly Gaussian signal and reference fields with
autocorrelations given by Eq. (37) and no phase-sensitive
auto- or cross correlations. Inequality (20) implies that

KEN(py.11)Ex(ps.1,))| is maximum when it equals the auto-
correlation function (37). We will take this to be so—to
maximize the strength of the ghost image—and assume that
this phase-insensitive cross correlation is real valued and
non-negative. Because near-field detection-plane correlations
coincide with source-plane correlations, we can now obtain
the near-field ghost image by substituting the right-hand side
of Eq. (37) into Eq. (32). Doing so gives us the result

Clp)) = Colp)) + C,(2P/mad) e e

Xf dp e—\m—plz/Pge—2lplz/ag|T(p)|2. (38)
A

2

Equation (38) reveals three significant features of the near-
field, thermal-state ghost image. First, the ghost image is
space-limited by the reference beam’s average intensity pro-
file, so that the object must be placed in the field of view, a
[31]. Second, the useful transverse scanning range of the
pinhole detector is restricted to the field of view, a,. Finally,
and most importantly, the finite cross-correlation coherence
length pg limits the resolution of the image. When field-of-
view limitations can be neglected, the ghost image in Eq.
(38) is proportional to the convolution of the object’s inten-
sity transmission |T(p)|>, with the Gaussian point-spread

function e""'z/P(zJ. Thus the spatial resolution, defined here as
the radius to the e7? level in the point-spread function, is
V2po.

Now let us suppose that the ghost image is formed in the
far field, when Dy<<1, with the source correlations as as-
sumed for the near-field regime. In this case we must first
propagate source correlations—given by the right-hand side
of Eq. (37)—to the detection planes via Eq. (29). It turns out
that the detection-plane signal and reference fields still have
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maximum phase-insensitive cross correlation,

Kﬁi’k(pl,pz)R,ﬁi’k(tz -1)
2p ~(p1+lpsP)at-lpy = piP120] (1 = 112127
- ﬁe 1 ) 7lP2 — Py e~ 21 0, (39)
L

where m,€ €{1,2}, a;=2L/kypy, and p;=2L/koay, and the
ghost image signature becomes

C(py) = Cy(py) + C,I(ZP/77'czi)ze_2|"’1‘2/“i

Xf dp e—‘Pl —Plz/Pie‘z""z/“i|T(P)|2~ (40)
A

2

Therefore, the far-field field of view increases to 2L/kypy
while the image resolution degrades to 2\2L/ koay, but the
three conclusions drawn from the near-field image signature
(38) remain valid in the far-field regime. Because the reso-
lution of the image degrades with propagation, as long as
field of view is not the limiting factor, it is more desirable to
place the object in the source’s near field.

B. Ghost imaging with phase-sensitive light

Now we shall shift our focus to Gaussian-state signal and
reference fields that have a nonzero phase-sensitive cross
correlation, but zero phase-insensitive cross correlation. Ap-
plying the Cauchy-Schwarz bound (23) to the Gaussian-
Schell model autocorrelations in Eq. (37) we find that the

maximum |(Es(py.1,)Er(p.1,))| for a classical Gaussian
state is also given by Eq. (37). Similar to what we did for the
phase-insensitive case, we shall take the phase-sensitive
cross correlation to achieve its classical magnitude limit and
assume that it is real valued and non-negative. Then, because
the detection-plane cross correlation equals the source-plane
cross correlation in the near field, we can immediately get
the near-field ghost image by substituting the right-hand side
of Eq. (37) into Eq. (32), obtaining

C(p,) = Co(py) + Cp(QP/Wa(z))ze_zlp”z/ag

Xf dp e lr —p\Z/Pée—2\p\z/a§|T(p)|2, (41)
A

2

Equations (34) and (35) give C,=C,, for our Gaussian-
Schell model source, making the near-field ghost image
formed with classical phase-sensitive light identical to the
near-field ghost image formed with phase-insensitive light,
with the exception that the near-field condition for phase-
sensitive coherence propagation is far more stringent than
that for its phase-insensitive counterpart, because Dy <<D,.
When the source-to-object separation is in the far-field
regime for phase-sensitive coherence propagation, then the
source-plane phase-sensitive cross correlation that gave the
preceding near-field ghost image gives rise to the following
detection-plane phase-sensitive cross correlation [28]:
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K(ll,g(PpPz)R({,’%(fz —1)
2P oP+loaPriailps + p220E ~(ts — )27
= ﬂ-aze 1 2 L™IP2 1 Le~\2 7N 0, (42)
I

which leads to

C(p,)=Cy(p)) + CP(ZP/Wai)26_2|P1‘2/"i

> f dp e P +p\2/pie—2lp|2/ai|r(p)|2 (43)
A

2

for the far-field ghost image formed with classical phase-
sensitive light. Again invoking C,=C,, for our Gaussian-
Schell model source, we see that the far-field ghost image
formed with classical phase-sensitive light is an inverted ver-
sion of the corresponding far-field ghost image formed with
phase-insensitive light; i.e., it has field of view a; and spatial
resolution y2p;, as did the phase-insensitive ghost image,
but the phase-sensitive ghost image is proportional to
1 T(=p) |2 e lol Pl whereas the phase-insensitive ghost image
was proportional to |T(p)|2*e“9‘2/”i. As seen for the near
field, the far-field condition for phase-sensitive coherence
propagation is much more stringent than that for the phase-
insensitive case, because D> D,

Finally, we turn to the ghost image produced using a non-
classical Gaussian state—i.e., one whose phase-sensitive
cross correlation violates (23). In what follows we will re-
strict our attention to two limiting cases in which the phase-
sensitive cross correlation is coherence separable, so that we
may utilize the machinery developed earlier in this paper. In

both cases we will take (Eg(p;.t,)Er(p,.12)) to be real val-
ued and non-negative with the maximum magnitude permit-
ted by quantum theory. The limits of interest for this source
will be those of high brightness, g7k, Q)>1, and low
brightness, g(")(k,ﬂ) <1, when the source’s autocorrelations
are given by Eq. (37).

At high brightness, the distinction between the cross-
correlation functions of the quantum and classical phase-
sensitive sources becomes insignificant, so that the results
given above for the ghost image formed with classical phase-
sensitive light are excellent approximations for the quantum
case. At low brightness, however, our assumptions yield a
phase-sensitive cross-correlation spectrum satisfying

E0hk Q)] = g (k. Q) )
2
=202m)"* \/@e—pék%zxe—mﬂom’ 4s)
ay

from which we see that the low-brightness regime corre-
sponds to PTOp%/a(z)<l. The source-plane phase-sensitive
cross correlation in this regime is then found to be
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2
N N a 2P
Es(p1.1)Eg(pstr)) = 21m) [ 25—
(Es(py1.1)ER(py.1y)) = (2/7) PTOp% wa%

2 2
Xe—(|P1\2+\P2\2)/ao—\Pz - Pl\z/Poe—(fz - 11)2/7?).

(46)

Note that (46) is still a Gaussian-Schell, cross-spectrally pure
correlation function, so that in the source’s near field we get

2 a% ( 2P )2 2,2
( =( + \/i—( —_— e‘zlpl‘ lag
(p1) o(p1) PTOp2 p a(z)

0

» J dp &2 = PP 2ol T )2 (47)
A

2

This near-field ghost image has the same field of view, a, as
the near-field ghost images formed with classical (phase-
insensitive or phase-sensitive) light, but its spatial resolution
Po 1s a factor of V2 better than the spatial resolutions of those
classical near-field imagers. In addition, the quantum case’s
image-to-background ratio is much higher than those of the
classical 1imagers, because a%/PTopg>1 in the low-
brightness regime.

The far-field ghost image for the nonclassical source is
obtained by propagating its phase-sensitive cross correlation
from Eq. (46) to the detector planes and substituting that
result into (32). The result we obtain is

2 a% ( P )2 2,2
C(p) =Cy(py) + \/j C,| — | el
(pl) 0(p1) ’7TPTOp2 P ’7761%

0

xf dp elP +p|2/Pie—\P\2/ai|T(p)|2_ (48)
A

2

Thus, the far-field resolution achieved with the quantum
source equals those realized using the classical sources con-
sidered earli_er, but the field of view has been increased by a
factor of y2. It is worth pointing out that the quantum-
enhancement factors—of spatial resolution in the near field
and field of view in the far field—derive from the broadening
of the weak spectrum g (k,€)) when its square root is taken.
That these enhancement factors both equal 2 depends,
therefore, on our choosing to use a Gaussian-Schell correla-
tion model. Other correlation functions would lead to differ-
ent enhancement factors. Finally, as found above for the
near-field case, the quantum source yields dramatically
higher image-to-background ratio in far-field ghost imaging
than both its phase-insensitive and phase-sensitive classical
counterparts.

IV. IMAGE CONTRAST

Thus far we have concentrated on the image-bearing
terms in the photocurrent correlation from Eq. (32). These
image-bearing terms are embedded in a background Cy(p,),
which, as we have seen in the preceding section, is much
stronger for classical-source ghost imaging than it is for low-
brightness quantum-source ghost imaging. It therefore be-
hooves us to pay some attention to the effect of background
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on ghost-imaging systems. For the sake of brevity, we will
limit our discussion to the near-field imagers; the far-field
cases can be shown to have similar image-contrast issues.
Also, we shall assume that the transmittance pattern being
imaged lies well within the field of view of all these ghost
imagers and restrict ourselves to considering the behavior of
C(p;) in an observation region R that encompasses the
image-bearing terms while satisfying |p;| <ay. In this case,

C= maxg[C(p;)] — ming[C(p,)]

Col0) (49)

is a meaningful contrast definition. Its numerator quantifies
the dynamic range of the image-bearing terms in the photo-
current correlation C(p;), while its denominator is the fea-
tureless background that is present within the observation
region.

For analytical convenience, let us take the baseband im-
pulse response /() to be a Gaussian with e~>-attenuation
time duration T

hy(t) = e‘g’z/ﬁl\'S/ﬂ'Tfl. (50)

The contrast for the classical (phase-sensitive or phase-
insensitive) ghost imagers then satisfies

co=clc?, (51)
where the spatial (s) factor is given by

_ maxpl[zc(pl)] - minpl[Ic(pl)]

c\ , (52)
f dp|T(p)|*
Ay
with
I(p) = f dp P =i T(p) 2 (53)
A

2

being the point-spread-degraded image of |T(p)|*> and the
temporal (¢) factor obeys

C = 11 +(T,2T,)?. (54)

Likewise, for the low-brightness regime quantum imager we
find that its contrast C'9 factors into the product of a spatial
term:

oo~ \/Z a; maxpl[Iq(P])]—minpl[Iq(pl)]’ 55

a PTop2
oPo J dp|T(p)|*
A

2

with

2,2
Z(p) = f dp e”2P1=Pln| T (p) (56)
A

2

being its point-spread-degraded image of |T(p)|* times a tem-
poral term

C9 =11+ 12212 (57)

The preceding classical and quantum contrast expressions
possess interesting and physically significant behavior. We
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shall first explore the classical case. To get at its contrast
behavior, we will assume that T(p) is a binary amplitude
mask, as has often been the case in ghost-imaging experi-
ments. It follows that

C) = pYAr<1, (58)

where

4= [ apimiol (59)

and the inequality in (58) holds because Ay/ p(z) is approxi-
mately the number of resolution cells in the ghost image.
Combined with the fact that C;”)S 1, Eq. (58) shows that
classical-source ghost imaging always has low contrast ac-
cording to our contrast definition. This is why classical-
source ghost imaging has been performed with thermalized
laser light and has used ac coupling of the photocurrents to
the correlator [10]. Thermalized laser light is a narrowband
source, for which 7,<T,, so that Cg”)z 1. The use of ac
coupling implies that the correlator is estimating the cross
covariance between the photocurrents produced by detectors
1 and 2, rather than their cross correlation. This ensemble-
average cross covariance is given by C(p;)—Cy(p,), so it
might seem that covariance estimation alleviates all concerns
with the background term. Such is not the case. Even though
the background term does not appear in the photocurrents’
cross covariance, its shot noise and excess noise dictate that
a much longer averaging time will be required to obtain an
accurate estimate of this cross-covariance function—i.e., to
get a high signal-to-noise ratio ghost image. Now suppose
that classical-source ghost imaging is attempted using broad-
band light for which T,/ T,~ 103, corresponding to a THz-
bandwidth source and GHz-electrical-bandwidth photodetec-
tors. In comparison with a narrowband classical-source ghost
imager of the same photon flux P, the broadband imager
must use a 10°times longer time-averaging interval to
achieve the same signal-to—shot-noise ratio.

Turning now to the contrast behavior of the low-
brightness quantum-source ghost imager, our assumption of
a binary amplitude mask leads to

2
@~ %
S

> 1/PT, (60)
T

because of our field-of-view assumption. Thus in broadband,
low-brightness, low-flux quantum ghost imaging we find that

CP> 1/PT;> 1, 61)

where the last inequality invokes the low-flux condition. This
is why biphoton sources yield background-free ghost images
[2,5,6], despite SPDC being a broadband process.

V. RELAY OPTICS

Our analysis has assumed that the detector plane coin-
cides with the object plane, but a realistic ghost-imaging sce-
nario will likely require a separation between these two
planes, as shown in Fig. 4. In this figure, the bucket detector
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FIG. 4. (Color online) Ghost-imaging setup with relay
optics.

is placed Ly meters away from the object and we assume no
control over this path, but we allow ourselves to freely
modify the signal-arm path. Thus we place a focal-length-f
lens d; meters behind the object plane and d, meters in front
of the detector plane, such that 1/d;+1/d,=1/f. In addition,
because the optical path lengths may be different, we intro-
duce a (Lg—d;—d,)/c post-detection electronic time delay to
maximize the temporal cross correlation of the two detected
fields. The resulting photocurrent cross correlation is then

C'(p)) =Co(p) +C, J dpalK) (p1.po)?

Ay

2

+Cpf dp2|K§p/T2/(P1’P2) , (62)
A

2

in terms of the phase-insensitive and phase-sensitive cross
correlations K(l",’)z,(pl, p,) for m=n,p of the detected fields

E 1’ and Ezr.

The magnitudes of these detection-plane cross correla-
tions are easily found from thin-lens imaging theory, with the
following results:
koM

. 2
f dp/ e—zk0(2p2-p'—|p'| )2Lg

(m)
|K11,2f(pl’p2)| = 2Ly

XK (Mpy.p)T(p")|. (63)

where M =—d,/d, is the signal-arm magnification factor. For
a sufficiently large bucket detector we can approximate the
integrals in (62) as covering the entire plane: viz.,

Cm f
A

61'[’2|K(1r7,)2'(l)1,Pz)|2 =~ Cmf dp2|K(1",1’)2,(p1,p2)|2

2

(64)

=M*C,, f dp|K"(Mpy.p)||T(p)]? (65)

for m=n,p, where the last equality follows from Parseval’s
theorem. In this limit, C'(p,)=M>C(Mp,), where C(p,) is
given by (32). Hence choosing d,=d,=2f will yield an in-
verted version of the object-plane ghost image. Image reso-
Iution and field of view are then determined by the phase-
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sensitive and phase-insensitive coherence properties of the
object-plane fields, and the placement of the detectors rela-
tive to this plane only determines the signal-arm optics that
are needed to obtain this object-plane ghost image.

VI. DISCUSSION

The fundamental source property that enables acquisition
of a ghost image—whether the source is classical or
quantum—is the nonzero cross covariance between the
photon-flux densities of the two detected fields—i.e., the
cross correlation of the photon-flux densities minus the prod-
uct of their mean values. In particular, the product of mean
values generates the background term, while the cross cova-
riance produces the image-bearing terms. For zero-mean,
Gaussian-state sources, the cross correlation of the photon-
flux densities, which is a fourth-order field moment, reduces
to a sum of terms involving second-order field moments.
Consequently, both phase-sensitive and phase-insensitive
field-operator cross correlations can contribute to the ghost
image. In the Appendix we will show that any pair of phase-
sensitive and phase-insensitive cross-correlation functions
can be obtained with two classical Gaussian-state fields, as
long as there are no restrictions on these fields’ autocorrela-
tion functions. In this respect, the ghost image does not con-
tain any quantum signature per se. However, if we compare
sources that have identical autocorrelation functions, we find
that nonclassical fields with low brightness and maximum
phase-sensitive cross correlation offer a spatial resolution ad-
vantage in the source’s near field and a field-of-view expan-
sion in its far field. The field of view in the near field and the
resolution in the far field are determined by the beam sizes at
the source and hence are identical for classical and nonclas-
sical fields.

A number of recent publications have implied that ghost
imaging with thermal-state light cannot be explained by clas-
sical electromagnetic theory in combination with semiclassi-
cal photodetection theory, but that a strictly quantum-
mechanical interpretation involving nonlocality must be used
to understand such experiments [10,32]. A key conclusion
from our paper, however, is that the classical theory of ghost
imaging is quantitatively indistinguishable from the quantum
theory of ghost imaging for any optical source that is in a
classical state, regardless of the propagation geometry. Here,
a classical state is one whose density operator has a proper P
representation, so that its photodetection statistics can be cor-
rectly quantified with classical, stochastic-field electromag-
netism and detector shot noise. Thermal light—whether it is
broadband, such as natural illumination, or narrowband, such
as thermalized laser light—falls precisely within this cat-
egory of Gaussian states. Therefore experiments utilizing
thermal light sources alone cannot validate the quantum de-
scription. Furthermore, and perhaps more critically, there is
no nonlocal interaction in thermal-light ghost imaging. In
particular, because the joint state of the signal and reference
beams is classical—in the sense noted above—it cannot lead
to a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality [33]. We reiterate that it is the nonzero cross co-
variance between the photon-flux densities of the signal and
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reference fields that is responsible for the image-bearing
terms obtained from the Fig. 1 setup. For Gaussian-state
sources, this detection-plane cross covariance is found, by
moment factoring, from the phase-insensitive and phase-
sensitive field cross-correlation functions. These detection-
plane field correlations follow, in turn, from propagation of
the corresponding source-plane field correlations through L
meters of free space. Thus, two classical fields that are gen-
erated in a correlated fashion at a source, yet propagating
paraxially in two different directions, will still exhibit spa-
tiotemporal correlations on transverse planes that are equi-
distant from the source, even though these planes may be
physically separated from each other. This concept is both
well known in and central to classical statistical optics
[17,19]. It is not at all related to nonlocality in quantum
mechanics—e.g., to violation of the CHSH inequality.

It is worth connecting some of the analysis presented in
this paper with recent theory for the coherence properties of
biphoton wave functions, which has led to an elegant duality
between the partial entanglement of biphotons and the clas-
sical partial coherence of phase-insensitive fields [29]. As we
have shown in Sec. II B, the biphoton state is the low-
brightness, low-flux limit of the zero-mean jointly Gaussian
state with zero phase-insensitive cross correlation, but maxi-
mum phase-sensitive cross correlation. In this limit, the bi-
photon wave function is the phase-sensitive cross-correlation
function between the signal and reference fields, and there-
fore the duality between phase-insensitive coherence propa-
gation and the biphoton wave function propagation is rooted
in the duality between phase-insensitive and phase-sensitive
coherence propagation [cf. Egs. (29) and (30)]. Furthermore,
classical fields may also have phase-sensitive coherence.
Thus, to correctly understand the fundamental physics of
quantum imaging, it is crucial to distinguish features that are
due to the presence of this phase-sensitive correlation in the
source fields from those that require this phase-sensitive cor-
relation to be stronger than what is possible with classical
(proper P-representation) states. The following examples
clearly illustrate our point. When ghost imaging is performed
with phase-sensitive light, image inversion occurs in the far
field for both classical and quantum sources. This inversion
is entirely due to the difference between the free-space
propagation of phase-sensitive and phase-insensitive correla-
tions, and it is not necessary for the phase-sensitive coher-
ence to be stronger than classical. On the other hand, the
background-free nature of ghost images formed with SPDC
light arises from that source’s phase-sensitive cross correla-
tion being much stronger the classical limit, as we showed in
Sec. IV.

In summary, we have used Gaussian-state analysis to es-
tablish a unified treatment of classical and quantum ghost
imaging. Our analysis reveals that ghost-image formation is
due to phase-sensitive and phase-insensitive cross correla-
tions between the signal and reference fields. Because arbi-
trary cross correlations can be achieved by classical and
quantum sources alike, image contrast is the only distin-
guishing feature between a source that is classical or quan-
tum. In particular, we emphasize that a classical source with
phase-sensitive cross correlation can produce an identical
image to that obtained with a biphoton source—up to a dif-
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ferent contrast and hence signal-to-noise ratio—even for
ghost-imaging configurations that utilize lenses, mirrors, or
other linear optical elements. If we compare ghost images
from classical and quantum sources having identical autocor-
relations, thereby fixing the background level, the low-
brightness quantum source offers resolution enhancement in
near-field operation and field-of-view enhancement in far-
field operation, in addition to higher contrast in both regimes.
Furthermore, because far-field spatial resolution and the
near-field field of view are determined by source-plane beam
size, they are identical for classical and quantum sources.
Finally, the conclusions in this paper are not contingent on
having coincident object and detection planes. They apply as
long as the signal arm can be freely modified to transfer the
object-plane correlations to the detection plane via an appro-
priately positioned lens.
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APPENDIX: CLASSICAL GAUSSIAN STATES WITH
ARBITRARY CROSS CORRELATIONS

Let us use ES(X) and ER(X) to denote the signal and ref-
erence field operators, where x=(p,7) conveniently com-
bines their space and time arguments. In this appendix we
will construct a zero-mean, jointly Gaussian, classical state
for these two quantum fields that has arbitrarily prescribed
phase-insensitive and phase-sensitive cross-correlation func-
tions

KR(x1,%5) = (Ef(x)) Ex(x,)), (A1)
KPh(x1,%,) = (Eg(x)) Ex(x,)), (A2)

respectively. We only require that both functions be suffi-
ciently well behaved that they can be regarded as kernels
which map the Hilbert space of square-integrable functions
into itself. Under this regularity condition we can perform
singular-value decompositions of these continuous kernels
[34] to obtain

ng'fl)e(xl,xz) = E nm(i)jn(xl)q)m(XZ)v (A3)
m=1

Kgl,)l)e(xl’XZ) = 2 /'l’mwm(xl)q,m(XZ)7 (A4)
m=1

where {¢,,(x))}, {®,,(x))}, {,(x))}, and {¥,(x,)}, for 1
=m<, are four complete and orthonormal sets spanning
square-integrable functions and the coefficients 7,, and w,,
are real, finite, and non-negative for all m.

Suppose we define two pairs of free-space, paraxial field
operators, {Es/(x),Ep/(x)} and {Egn(x),Egs(x)}, having the
modal expansions
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Eg(x)= 2 dgr (), (A5)
m=1

Ep(x) = 2 dpry®,,(%), (A6)
m=1

and

Eg(X) = 2 dgr (%), (A7)
m=1

Ep(%) = 2 gy W (). (A8)

m=1

In these expansions, {dy,}, for €¢=S",58",R',R" and 1=m
<, is a set of photon annihilation operators, with the ca-
nonical commutation relations [dg’m,dz,,m,]=5€’€/6m,mr and
[ae,ln’a€',nl’]=0-
Now, let us put the modes associated with the {d,,,} into
a zero-mean, jointly Gaussian state whose only nonzero
phase-insensitive cross correlations are
N
<asf’maR’,m> =2 Mm (A9)
and whose only nonzero phase-sensitive cross correlations
are

<aAS”,de”,m> = 2,(Lm, (A] O)

from which
(ES, (x1) Ego (%)) = 2K (x1.%5). (A11)
(Esr(x)) Egn(%2)) = 2K8}(%1.%,).. (A12)

Classical Gaussian states must have correlations that obey
the Cauchy-Schwarz inequalities from (20) and (23); see
[20]. Thus Egs. (A9) and (A10) imply that the modal auto-
correlations must obey

<d;’,maAS’,m><aA;',m&R’,m> =4 7]1271 (Al 3)

and

AT A AT 4 2
<aslf,mas”,m><aR”’maR”,m> = 4,LLm, (A 1 4)

for I=m<. We will take the modal autocorrelations to
equal these lower bounds, by assuming that

(@4 lisr ) = Ags o Rr ) = 27, (A15)

(g sy ) = (i ) = 2 (A16)

We shall also assume that all modal correlations—aside from
those which have already been specified—vanish. Equations
(A9), (A10), (Al5), and (A16) then determine the zero-
mean, jointly Gaussian state of the four fields
{Egi(x),Eg/(x),Egn(X), Ege(x)}, which is the tensor product
of zero-mean, jointly Gaussian states of {E (%) ,ER,(X)} and

043809-12



UNIFIED THEORY OF GHOST IMAGING WITH ...

{E (x) E #(X)}, because all their cross correlations are zero.
Defining the signal and reference fields via
Ey(x) = [Eg/(x) + Egi(x)]/\2 (A17)

and

PHYSICAL REVIEW A 77, 043809 (2008)
Ex(®) = [Egr(x) + Epr(x) ]2 (A18)

thus yields a pair of field operators that are in a zero-mean,

jointly Gaussian, classical state with the desired phase-

sensitive and phase-insensitive cross-correlation functions.
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