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We describe an assembly of N superconducting qubits contained in a single mode cavity. In the
dispersive regime, the correlation between the cavity field and each qubit results in an effective
interaction between qubits that can be used to dynamically generate maximally entangled states.
With only collective manipulations, we show how to create maximally entangled quantum states
and how to use these states to reach the Heisenberg limit in the determination of the qubit bias
control parameter (gate charge for charge qubits, external magnetic flux for rf-SQUIDs).
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The description of the interaction between atoms and
quantized modes of the electromagnetic field in a cav-
ity is called cavity quantum electrodynamics (cQED).
The first experimental studies used flying Rydberg atoms
in an rf resonator [1]. With the advent of quantum
computing several other implementations were developed
to mimic the quantum properties of atoms. Among
those, solid-state implementations are especially interest-
ing since they offer several advantages over real atoms:
these artificial atoms properties can be tailored and their
number and location is fixed. We concentrate our dis-
cussion on superconducting circuits. Superconducting
implementations of quantum computing attracted a lot
of attention in recent years because they are inherently
scalable and single qubit operations have been demon-
strated with classical coherent control in a variety of
qubits. Several theoretical studies treated the interac-
tion of superconducting qubit(s) with a quantized elec-
tromagnetic field. The proposal of an on-chip cQED ex-
periment using a Cooper-pair box as the artificial atom
strongly coupled to a one-dimensional cavity [2] is espe-
cially interesting since it was followed buy several exper-
iments. First, the strength of the coupling was shown to
be indeed stronger than the different decays constants so
that the vacuum Rabi splitting was observed [3]. Subse-
quently the ac-Stark shift was measured using a quantum
non-demolition technique (QND) [4] and the decoherence
time T2 evaluated from Ramsey fringe experiments [5].

In a cavity with a high quality factor, the photons can
serve as an information bus between several qubits and
therefore create correlations between distant qubits. Be-
side its fundamental interest and applications to quan-
tum information processing, entanglement offers the ad-
ditional advantage of allowing improved sensitivity in a
quantum-limited measurement. Compare to a measure-
ment made with one sensor, an improvement of the order

of
√
N is obtained when N classical sensors are used to

measure the same quantity. Now, if N quantum sensors
are coherently coupled, the improvement is of the order of
N . For instance, interferences between two different po-
larizations (modes) of three and four photon entangled
states have been observed [6, 7] and spectroscopy per-
formed on an assembly of three beryllium ions demon-
strated a similar improvement in frequency estimation
[8]. Today’s solid-state sensors do not take advantage
of this improvement made possible by quantum correla-
tions. So using entanglement in a superconducting im-
plementation to enable such Heisenberg limited measure-
ments could revolutionize sensor technology with, for in-
stance, electrometers and magnetometers.

In this work, we use techniques from other fields
(atomic QED, ion traps, quantum optics) to describe in-
teractions and manipulations needed in a superconduct-
ing circuit to perform a Heisenberg limited measurement.
We propose to use the photon-qubit interaction to create
an effective interaction between distant superconduct-
ing qubits. This interaction is used to generate maxi-
mally entangled states which in turn are used to beat
the standard quantum limit when measuring the Ram-
sey frequency. We show how this results in an Heisenberg
limited estimation of the qubit bias control parameter.

Most superconducting qubits can be described by the
following single qubit Hamiltonian [9]:

HQ = −Bz

2
σz −

Bx

2
σx (1)

with the bias Bz depending linearly of the control pa-
rameter λ: Bz = bz(1/2 − λ). This Hamiltonian is an
approximation valid around a symmetry point, obtained
for λ = 1/2, called the degeneracy point. Expressions
for the parameters Bz, Bx, bz and λ can be found in ref-
erence [9] in the case of a Cooper-pair box (CPB) or a
rf-SQUID.
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We now consider that the qubit is contained in cavity
QED described by the Hamiltonian Hc = ωc(a

†a+ 1/2).
The quantized cavity mode adds an incremental contribu-
tion λc(a

† +a) to the bias. The single qubit Hamiltonian
now reads:

HQ−C = −Bz

2
σz −

Bx

2
σx +

bzλc

2
(a† + a)σz (2)

We assume the strong coupling limit g ≫ κ, γ. We ne-
glect the cavity decay κ and excited state decay γ for
the moment. Experiments on a single CPB in a cavity
[3] support this assumption (g ≈ 10κ). We rewrite this
Hamiltonian in the eigenbasis of (1) which is done by per-
forming a rotation of θ around the y axis. The mixing
angle θ is given by tan θ = Bx/Bz. The resulting indi-
vidual contribution is then summed up N times to form
the description of an assembly of N identical qubits in a
single mode cavity:

HN = ΩSz + ωc(a
†a+ 1/2)

−2g(a† + a)(Sz cos θ + Sx sin θ) (3)

We used 2g = bzλc, Ω =
√

B2
x +B2

z and 2~S =
∑N

i=1 ~σi.
When θ = π/2 and the rotating wave approximation
is made, equation (3) take the form of the N -particle
Jayne-Cummings Hamiltonian. When θ = 0, equation
(3) describes an harmonic oscillator with a conditional
displacement, e.g. a displacement that depends on the
total state of the system Sz. However, the limit θ → 0
is reached when the bias Bz is maximum and Bx → 0.
In this case, the two-level approximation (1), hence equa-
tion (3), is not justified. We assume that the qubit-cavity
detuning ∆ = Ω− ωc is much larger than the qubit cou-
pling g to the cavity. We write Sx = (S+ + S−)/2 and
neglect the fast oscillating terms. Hamiltonian (3) can
be approximately diagonalized with a polaronic transfor-
mation U = exp

(

χ(aS+ − a†S−)
)

:

H̃N = UHNU
† ≈ ΩSz + ωc(a

†a+ 1/2)

+χ(S2 − S2
z − Sz + 2a†aSz) (4)

We define χ = (g sin θ)2/∆. A more complete diago-
nalization would require to also take into account the
displaced harmonic oscillator with Ud = exp( g cos θ

ωc

(a −
a†)Sz) and perform the transformation UdUHNU

†U†
d .

However, this complete transformation introduces terms
proportional to g2/ωc which we neglect because we are
interested in the regime where g ≪ ∆ ≪ ωc. We also
neglected terms in χ2 that would appear with the com-
plete transformation. Hence, equation (4) is valid to the
first order in χ. The two last terms of equation (4) are
the shifts in the qubit and resonator frequencies, induced
by the coupling of the qubits with the resonator. This
Lamb and ac-Stark shift (respectively) were predicted in
the case of a single CPB in a cavity [2].

The novelty of equation (4) compared to previously
published results is the appearance of an effective inter-
actionHsz = χS2

z betweenN qubits mediated by a cavity
photon. This interaction is a key element in non-optical
implementations of Heisenberg limited estimations. It
has been used extensively in ion traps experiments to gen-
erate maximally entangled states [10–12]. It was shown
how to utilize these states to perform an optimal fre-
quency measurement [13] and improve the estimation of
rotation angles [14]. More recently, a method involv-
ing only collective manipulations has been used to per-
form precision spectroscopy on an assembly of six beryl-
lium ions [15]. The first step consists to generate the
maximally entangled states |ψm〉 (see for instance refer-
ence [16]) using the time evolution of Hsz over a time
tsz = π/2χ:

|ψm〉 = e−i π

2
S2

z | −N/2〉x =

1√
2

(

| −N/2〉x + iN+E | +N/2〉x
)

(5)

When the number of qubits N is odd, another rotation
ei π

2
Sz is needed in addition to the ei π

2
S2

z [16]. We take
the parity into account in equation (5) by setting the
quantity E to 2 (1) when N is odd (even resp.). Initially
all the qubits are in their ground state, |J = N/2,M =
−N/2〉z = |−N/2〉z = | ↓〉1| ↓〉2 · · · | ↓〉N (we do not con-
sider the field part of the wave function at this point). As
the one-axis twisting term in equation (4) is defined with
the z axis, we need to perform a π/2 rotation (around
x) so that the twisting can take place. Therefore, we
define the operator UN = ei π

2
Sxe−iHsztsze−i π

2
Sx for no-

tation convenience. The average of spin vector calculated
with the wave function (5) is zero, 〈~S〉 = 0, so that the

natural choice of Sz (~S) as the observable to be measured
can not be made. Bollinger et al. showed that the parity
operator

∏

i σzi
was an adequate observable that could be

measured with the state (5). However the measurement
of this operator for a large number N of qubits is difficult
since it requires to distinguish odd and even numbers of
particles in state | ↓〉. A method involving only collec-
tive manipulations as been proposed in [8] to circumvent
this problem. First the maximally entangled state is con-
structed. In our case the sequence UN is applied to the
initial state | − N/2〉z. Afterward, the system acquires
a phase φ during a free evolution period T , which here
is given by Ω × T (for the purpose of the phase deter-
mination, we neglect the Lamb shift). Finally, another
application of the sequence UN transfers the phase infor-
mation, Nφ/2, into an amplitude information of either
state | +N/2〉z or | −N/2〉z:

|ψ〉 = UNe
−iφUN | −N/2〉z =

−i sin
(N

2
φ
)

| −N/2〉z+

iN+E cos
(N

2
φ
)

| +N/2〉z (6)
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The measurement will collapse the wave function |ψ〉 on
the state |+N/2〉z with probability P↑ = 1

2
(1+cos(Nφ)).

We propose to use cavity spectroscopy to infer the state
of the qubits. Assuming now there is finite but small cav-
ity decay rate κ, a signal at frequency ωc sent in the cav-
ity will experience a phase shift when it is transmitted.
Solving the Heisenberg equation for the field creation op-
erator, this phase shift ϑ is given by tanϑ = ±(2χN)/κ.
The probability P↑ is extracted from the time dependence
of ϑ. A measurement scheme as been proposed based
on this principle to perform a quantum non-demolition
measurement of the state of a single Cooper-pair box con-
tained in a cavity QED [2]. The difference is that because
the coupling to the cavity is

√
N stronger, the phase shift

ϑ is more important than the single qubit case.

The main motivation to use N -particle maximally en-
tangled state to perform a spectrocospy measurement
is to be able to relate the N fold frequency increase
to the phase uncertainty. Uncertainty on a parameter
ζ can be estimated from the error propagation formula
δζ = ∆Â/|∂〈Â〉/∂ζ| by measuring the operator Â. We
introduce the projection operator Â = |+N/2〉〈+N/2| so
that the quantity we propose to measure P↑ is the aver-

age of Â over the state |ψ〉 of equation (6). The variance
∆Â2 is then simply given by P↑(1−P↑) (second moment
of the Bernouilli distribution). Hence, the measurement
of P↑ leads to an estimation of the phase uncertainty δφ
equal to 1/N . Neglecting the frequency shift, the phase
acquired during the free evolution is Ω×T , and therefore
the frequency uncertainty is given by δΩ = 1/(NT ). In
superconducting circuits, the parameter λ controls the
level spacing Ω and therefore the uncertainties of both
quantities can be related through the following relation:

δΩ = 2bz cos θ δλ (7)

Hence, a Heisenberg limited measurement of the fre-
quency Ω performed with the sequence (6) results in an
improvement of the estimation of the parameter δλ =
1/(NT × 2bz cos θ). This method can be used to im-
prove the estimation of the gate charge ng (or the exter-
nal bias flux φx) in a system composed of N Cooper-pair
boxes (rf-SQUIDs resp.) coherently coupled. To help
understanding our scheme in particular and Heisenberg
limited measurements in general, we wish to emphazise
the difference between the quantum observable measured
and the parameter that the method allows to determine
with a better precision. The quantum variable defines
the types of superconducting sensors or qubit. To sim-
plify the discussion, let’s say there are mainly two types
of superconducting devices, electric charge and magnetic
flux sensors. The quantum variable measured is then
either the charge n̂ or the magnetic flux φ̂. Among sev-
eral characteristics, the performance of the device is set
partly by the quantum fluctuations of this quantity also
refered to as shot-noise. Now, the Hamiltonian of the

system can be tuned or controled with a classical (con-
tinuous) variable which is the gate charge ng in a charge
qubit or the external magnetic flux φx in a flux qubit.
A Heisenberg limited measurement consists in evaluat-
ing the uncertainty of the parameter (δng or δφx) for a
given value of this parameter with a measurement of the
quantum variable (n̂ or φ̂). Sometimes in the literature,
the error on the parameter obtained with N qubits unco-

herently coupled is called shot-noise limit (known also as
classical quantum limit, CQL) as it scales as 1/

√
N . This

designation is unfortunate as it can introduce a confusion
between the shot-noise of a single device refering to the
fluctuations of either the electric charge or the magnetic
flux, and the fluctuations of this quantity as whole when
it is actually spread over many devices.

Our scheme is useful away from the degeneracy point
as at this point cos θ = 0. However, one should bear in
mind that the coupling χ decreases as the operating point
is moved away from the degeneracy point, so a tradeoff
should be made to operate away, while no too far from
this point. The limited validity range around the degen-
eracy point is not a limitation in a system composed of N
Cooper-pair boxes since the different coherence times de-
crease with the distance from this point [17] and therefore
the operation far away from it, is not adequat to observe
coherent effects.

In this work, we described a collection of N supercon-
ducting qubits contained in a single mode cavity. Beside
the usual shifts in the qubit and resonator frequencies, we
find that the effective Hamiltonian contains a term χS2

z

describing the interaction between all the qubits. This
interaction can be used to dynamically prepare maxi-
mally entangled states. We adapt a method used in ion
traps to demonstrate the use of these states to reach the
Heisenberg limit in the Ramsey frequency determination.
Finally, we show that the parameter that controls the en-
ergy spacing can be estimated with an uncertainty that
scales inversely with the number N of qubits.
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