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We have theoretically studied the space-time entangled biphoton state generated from a two-level
atomic system. In the photon counting measurement, the two-photon coincidence counting rate is
a damped oscillation. The oscillation period is determined by the effective Rabi frequency and the
damping rate is determined by the linewidth of the inhomogeneous-broadened ground state and
the dipole dephasing rate. In an optical-pathway-balanced configuration, the two-photon temporal
correlation shows an anti-bunching effect which corresponds to the interference between two types
of nonlinear four-wave mixing processes occurring in such a two-level system. The visibility of the
normalized second-order quantum coherence function g(2)(τ) increases along with the increase of
the effective Rabi frequency but has an upper limit at 45%. We find agreement between the theory
and the experiments [P. Kolchin et al., Phys. Rev. Lett. 97, 113602 (2006); S. Du, J.-M. Wen, M.
H. Rubin, and G. Y. Yin, ibid. (2006)].
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I. INTRODUCTION

Since the seminal work of Einstein, Podolsky and Rosen [1], entangled states of two or more quantum particles has
become the heart of many major paradoxes associated with the interpretation of quantum mechanics [2, 3]. Entangled
pure states are states of N ≥ 2 particles that cannot be written as products of single-particle states. The importance
of these states has been known since the earliest days of quantum theory [1–3]. Entangled photon pairs are not only
of interest in themselves, but have many potential applications ranging from quantum computing and communication
[4], imaging [5], lithography [6], optical measurement [7], to spectroscopy [8].

Conventionally, a powerful technique for generating paired photons is spontaneous parametric down-conversion
(SPDC), in which a pump laser drives the atomic oscillators in a noncentrosymmetric crystal into a nonlinear regime,
and then two down-converted beams are radiated by these oscillations. SPDC has been extensively studied in both
theory and experiment for more than two decades [9, 10]. Recently, generation of paired photons by using electro-
magnetically induced transparency (EIT) [11] has attracted a great deal of attention in both experiment and theory
[12–17]. Compared with the standard SPDC tool, this new source of correlated photons has such benefits as narrow
spectrum, high conversion efficiency, long coherence time and coherence length.

It has been known for a long time that four-wave parametric interactions in a strongly driven two-level system
[18] may produce correlated photons [19, 20]. However, experiments done in either an atomic beam [19] or a room
temperature cell [20] have very low generation rate and require very long measurement time. In this paper, we
present a detailed theoretical study of biphoton generation from a two-level system using magneto-optically trapped
cold 87Rb atomic ensemble. A direct experimental comparison between such a two-level atomic biphoton emitter
and EIT-based multilevel system has been presented in a recent publication [15]. In the presence of a retro-reflected
pump beam, entangled photon pairs are spontaneously radiated into opposing single-mode fibers (SMF) and detected
by photo-detectors D1 and D2 (see Fig. 1). Since the nonlinearity is very small, this allows us to approximate the
output state at the output surface(s) of the medium in the two-photon limit by the time-dependent perturbation
theory. Here we emphasize the two-photon amplitude which is of importance in most of the two-photon optics. We
found that in the photon counting measurement, the feature of the two-photon coincidence counting rate is a damped
Rabi oscillation, which is in agreement with the experimental results. The oscillation period is determined by the
effective Rabi frequency Ωe and the damping rate is determined by the linewidth γg of the inhomogeneous-broadened
ground state and the dipole dephasing rate γ2. In an optical-pathway-balanced experiment, photon anti-bunching
[21] appears. In the two-photon amplitude picture, this anti-bunching effect can be interpreted as the interference
between two types of four-wave mixing processes (see Fig. 2) which occur in a two-level system. The visibility of the
second-order quantum coherence function g(2)(τ) increases along with the increase of the effective Rabi frequency, but
has an upper limit 45%. The comparison between theory and experiment shows a good agreement. In this paper, we
focus on the two-photon temporal correlation.
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FIG. 1: (color online) (a) Four-wave mixing in a two-level system. In the presence of a retro-reflected pump beam at frequency
ω1, the two-level atoms scatter light into correlated fields at the frequencies ω1 + δ and ω1 − δ. The pump detuning is
∆ = ω1−ωeg. (b) In the photon counting measurement, detectors D1 and D2 are applied to collect paired photons propagating
in opposite directions.

The paper is organized as follows. In Sec. II, the optical response of the two-level system is formulated in
quantum theory. The first-order linear susceptibility χ carries the information about the dispersion profile and
transmission spectrum of such a two-level medium. The third-order nonlinear susceptibility χ(3) determines the
parametric conversion coefficient and also indicates two kinds of physical processes which occur in this four-wave
mixing. In Sec. III, the two-photon state at the output surface(s) of the medium is obtained by the first-order
perturbation theory. The bandwidth of biphoton is determined by both the phase matching and linewidths of triplet
resonances in such a two-level system. In Sec. IV, theoretical analysis shows that the two-photon temporal correlation
is a damped Rabi oscillation. Based on the normalized second-order quantum coherence function g(2)(τ), the visibility
is studied and its upper limit is found to be below 45%. This is further confirmed by comparing the theoretical results
with the experimental data. In the Appendix, the calculation of the single-photon counting rate is provided.

II. OPTICAL RESPONSE OF A TWO-LEVEL SYSTEM

We consider a medium of identical two-level atoms or molecules initially in their ground state |g〉 [Fig. 1(a)],
contained in a long thin cylindrical volume with length L and cross area A and the average atomic density is N . The
idealized two-level atoms are separated by the atomic resonance frequency ωeg. In the presence of a retro-reflected
pump beam, paired photons are spontaneously created and propagate into opposite directions. When the pump laser
with frequency ω1 is applied to atomic transition |g〉 → |e〉 with a detuning ∆ = ω1 − ωeg, the response of the atomic
system is driven to oscillate at the frequencies ω3 = ω1 + δ and ω4 = ω1 − δ, shown as wavy arrows in Fig. 1(a).
The character of this nonlinear process may be profoundly modified due to the strong intensity of pump laser and
in such a case, perturbation theory is not sufficient to describe the interaction between pump and medium. In the
photon counting measurements [Fig. 1(b)], the photo-detectors D1 and D2 are used to detect correlated photon pairs.
For cold 87Rb atoms with a typical temperature of 100 µK, the Doppler effect is small. Therefore, in the following
discussions we consider an ideal system in which the Doppler effect will not be taken into account. In addition, the
polarization of light is also not taken into account.

The dynamics of a single atom is described by the atomic operators, which at the initial time are given by

Qij(0) = |i〉〈j| (i, j = g or e),

and satisfies the Heisenberg operator equation of motion in the dipole approximation

Q̇ge = −(iωeg + γ2)Qge − idegẼQz + Fge, (1)

Q̇ee = −(Qee −Qeq
ee)γe + 2Im[dgeẼ

∗Qge] + Fee, (2)

Q̇gg = −(Qgg −Qeq
gg)γg − 2Im[dgeẼ

∗Qge] + Fgg, (3)

where deg = 〈e|d|g〉/h̄ is the dipole matrix element divided by h̄, ωeg = ωe − ωg is the atomic transition frequency
between states |e〉 and |g〉. Qz = Qee−Qgg describes the population inversion and Qeq = Qeq

ee−Qeq
gg is the equilibrium

population inversion in the absence of the optical fields. γe and γg are the population relaxation rate of the excitation
state and the linewidth of the inhomogeneous-broadened ground state, and γ2 = 1/T2 is the dipole dephasing rate,
respectively. Fαβ are the quantum Langevin noise operators. Since these Langevin noise operators introduce the
unpaired photons which are not of interest here, they will be ignored from now on [22]. Ẽ(t) is the positive frequency
total field operator

Ẽ(t) = E(t)e−iω1t = [E1 + E(+)
3 e−iδt + E(+)

4 eiδt]e−iω1t, (4)



3

where E1 represents the slowly varying amplitude of classical pump field, E(+)
3 and E(+)

4 are field operators of generated
beams. In order to eliminate the fast oscillating phase terms in Eqs. (1)-(3), we introduce the following transformation

Qge(t) = σ(t)e−iω1t. (5)

Now Eqs. (1)-(3) become

σ̇ = (i∆− γ2)σ − idegE(Qee −Qgg), (6)

Q̇ee = −(Qee −Qeq
ee)γe + 2Im[dgeE

∗σ], (7)

Q̇gg = −(Qgg −Qeq
gg)γg − 2Im[dgeE

∗σ]. (8)

Eqs. (6)-(8) cannot be readily solved exactly for the field given in Eq. (4). Instead, we will adopt the treatment in
[18] and try to find a solution keeping all orders to pump field E1 while maintaining the lowest order in E3,4 of the
weak fields. Therefore, the steady-state solution of Eqs. (6)-(8) is required to be of the form

σ = σ0 + σ3e
−iδt + σ4e

iδt, Qee = Qe + Qe3e
−iδt + Q†

e3e
iδt, Qgg = Qg + Qg3e

−iδt + Q†
g3e

iδt, (9)

where σ0, Qe and Qg are the solution for the case in which only the pump field E1 is present, while the other terms
are assumed to be small such that |σ3|, |σ4|& |σ0| and |Qe3|& |Qe|, |Qg3|& |Qg|. In addition, we set Q0 = Qe−Qg,
Q3 = Qe3 −Qg3 and Q†

3 = Q†
e3 −Q†

g3.
We next substitute the trial solution (9) into Eqs. (6)-(8) and look at the terms with the same time-dependence.

As stated above, we will drop any term that contains the product of more than one small quantity. Then after some
algebra, we have

Q0 =
∆2 + γ2

2

∆2 + γ2
2 + γ2

2

(
1
γe

+ 1
γg

)
|Ω1|2

Qeq, σ0 =
degE1Q0

∆ + iγ2
, (10)

Q3 = −2|dge|2Q0(δ + 2iγ2)
D(δ)

[
δ −∆ + iγ2

∆− iγ2
E∗1E(+)

3 − δ + ∆ + iγ2

∆ + iγ2
E1E

(−)
4

]
, (11)

σ3 =
deg(E1Q3 + E(+)

3 Q0)
∆ + δ + iγ2

, (12)

σ4 =
deg(E1Q

†
3 + E(+)

4 Q0)
∆− δ + iγ2

, (13)

where

D(δ) =
[
(δ + iγe)(δ + iγg)
δ + i(γg + γe)/2

]
(δ + ∆ + iγ2)(δ −∆ + iγ2)− |Ω1|2(δ + iγ2) = −D∗(−δ). (14)

Here we have introduced the Rabi frequency Ω1 = 2degE1. The physics of Eqs. (10)-(13) can be understood as
follows. Eq. (10) describes the optical response of the atoms to the pump field. σ0 characterizes the linear Rayleigh
scattering of the pump and will result in the background noise in the coincidence counting measurement. Without
the pump beam, Q0 = Qeq as we expected. Eqs. (11) and (12) together show the optical response to the generated ω3

field. As we shall see below, among those terms two contribute to the effective linear susceptibility and the third one
is for the third-order nonlinear susceptibility which is the quantity of interest in the paired photon generation. On
the RHS of Eq. (11), the first term corresponds to the Rayleigh-wing scattering at frequency ω3 and the second term
to the correlated photon generation. On the RHS of Eq. (12), the first term is the nonlinear optical response to the
generated ω3 field while the second term is the linear Rayleigh scattering of the ω3 field. Similarly, Q†

3 plus Eq. (13)
gives the information of optical response to the ω4 field. Q3 (and consequently σ3 and σ4) shows a resonance whenever
the pump beam is tuned to the line center so that ∆ = 0, or whenever the real part of the function D(δ) gives a zero.
In the limit |Ω1|→ 0, i.e. the weak-optical-excitation case, the zeros of D(δ) occur near δ = 0,±∆. In general, |Ω1|2
is not small and the full form of Eq. (14) should be kept. To determine its resonance structure, we write D(δ) in
terms of its real and imaginary parts and assume γe ' γg so that (δ + iγe)(δ + iγg)/[δ + i(γe + γg)/2] ≈ (δ + iγg).
Solving ReD(δ) = 0, gives a triplet of resonances occurring at:

δ = 0, δ = ±
√

Ω2
e + γ2

2 + 2γgγ2,
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FIG. 2: (color online) (a) Resonance around δ = 0. In such a case, the generated beams are scattered at the same frequency
ω1 as the pump laser. (b) Resonances around δ = ±Ωe. In such a case, the pump laser creates two virtual states, shown as
dashed lines, one at an energy h̄ω1 above the ground state |g〉 and the other at an energy h̄ω1 below the excitation state |e〉.
Photons from the pump laser will be inelastically scattered at two frequencies ω1 + ∆ and ωeg, as shown by wave arrows.

where we have introduced the effective Rabi frequency Ωe =
√

∆2 + |Ω1|2. To further understand the physical
processes behind D(δ), we assume Ωe ' (γe, γg, γ2). In such a limit, the three resonances occur at δ = 0, ±Ωe and
they are well separated. Near the (central) resonance at δ = 0, D(δ) can be approximated as

D(δ) = −Ω2
e(δ + iΓ0), Γ0 =

∆2

Ω2
e

γg +
|Ω1|2

Ω2
e

γ2. (15)

Γ0 represents the width of this resonance. In the case of weak optical pumping, i.e., |Ω1| & ∆, Γ0 approaches
the linewidth γg of the inhomogeneous-broadened ground state while in the case of strong optical excitation, i.e.,
|Ω1| ' ∆, Γ0 reaches the dipole dephasing rate γ2. In the same way, near the (sideband) resonances at δ = ±Ωe,
D(δ) can be approximated as

D(δ) = 2Ω2
e(δ ∓ Ωe + iΓ), Γ =

|Ω1|2

Ω2
e

(γg + γ2

2

)
+

∆2

Ω2
e

γ2. (16)

The sidebands have the same linewidth Γ. As seen from Eq. (16), Γ goes to γ2 in the weak-optical-excitation limit
while it approaches (γg + γ2)/2 when |Ω1|' ∆.

Two types of physical processes behind D(δ) are illustrated in Fig. 2. When the (central) resonance occurs around
δ = 0, the generated beams have the same central frequencies as the pump beam, as shown in Fig. 2(a). In this
case, the correlated photon pairs are generated due to by the absorption of a pair counter-propagating pump photons
as required by the phase matching conditions. The spontaneously emitted paired photons propagate into opposite
directions. This leads to the photon bunching effect as discovered by Hanbury-Brown and Twiss [23]. When the
resonances appear around δ = ±Ωe, i.e., sideband generation as depicted in Fig. 2(b), the pump laser creates two
virtual states, one at an energy h̄ω1 above the ground state |g〉 and the other at an energy h̄ω1 below the excitation
state |e〉. The central frequencies of generated fields which are peaked around ω1+∆ are due to the inelastic scattering
of the pump beam. The two types of physical processes demonstrated in Fig. 2 occur in four-wave mixing in a two-
level system with the same coefficient. As we shall see in Sec. IV A, these two kinds of parametric processes may
destructively interfere with each other and result in the photon anti-bunching effect in a two-photon coincidence
counting measurement.

Now let us look at the optical response of the atomic dipoles at frequencies ω1 ± δ. We are interested in the
susceptibilities. The slowly varying amplitudes of polarization operators for an ensemble are given by P(ω3) =
Nh̄dgeσ3 and P(ω4) = Nh̄dgeσ4 with the atomic density N . The relationship between the polarization and the
susceptibility is P = ε0χE + ε0χ(3)EEE, where χ is the effective linear susceptibility and χ(3) is the third-order
nonlinear susceptibility [18]. By using Eqs. (10)-(13), one can find that

χ3(δ) =
Nh̄|dge|2Q0

ε0(∆ + δ + iγ2)

[
1− |Ω1|2(δ + 2iγ2)(δ −∆ + iγ2)

2D(δ)(∆− iγ2)

]
, (17)

χ(3)
3 (δ) =

2Nh̄|dge|4Q0(δ + 2iγ2)
ε0D(δ)(∆ + iγ2)

; (18)

χ4(δ) = χ3(−δ), (19)

χ(3)
4 (δ) = χ(3)

3 (−δ). (20)

Eqs. (19) and (20) show the symmetry between the optical responses to the ω3 and ω4 fields. The effective linear
susceptibilities χ3 and χ4 determine the dispersion profile and transmission spectrum of the weak fields ω3 and ω4
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FIG. 3: Triplet resonances shown in |χ(3)
3 (δ)|. In the simulation, the parameters were chosen as: γg/γ2 = 0.087, |∆|/γ2 = 13.3

and |Ω1|/γ2 = 1.38.

crossing through the medium, respectively. It is known that the natural spectral width of paired photons is governed
by the dispersion, which is determined by the effective linear susceptibility as shall be seen below. The third-
order nonlinear susceptibilities χ(3)

3 and χ(3)
4 not only control the parametric conversion efficiency of paired photons

generation but also play an important role in the two-photon amplitude (or wavepacket). It is easy to verify that
χ(3) ∝ 1/Ω2

e∆ in the large pump-detuning limit. On the RHS of Eqs. (17) and (19), the first term corresponds to the
linear Rayleigh scattering of the ω3 and ω4 fields and the second term to the nonlinear Rayleigh scattering. As seen
from Eqs. (17) and (19), the effective linear optical responses χ at frequencies ω1 ± δ come from two contributions.
The first one corresponds to the dc part of the population inversion Q0 because of the linear Rayleigh scattering
at frequencies ω1 ± δ. The second one is the result of population oscillations, which will give the background of
Rayleigh-wing scattering. In Fig. 3, the feature of triplet resonances is shown by plotting |χ(3)

3 (δ)| as a function of
δ/γ2. The parameters are chosen as γg/γ2 = 0.087, |∆|/γ2 = 13.3 and |Ω1|/γ2 = 1.38. It is obvious that the central
component is much narrower than two sidebands and two sidebands are located around ±∆, as discussed above. It
is found that when γg increases, the central peak decreases and meanwhile its bandwidth increases.

Before proceeding with the discussion, it is necessary to look at the phase matching of such a four-wave mixing in a
two-level system. The nonlinear optical response of the medium as described by Eqs. (17)-(20) will of course influence
the propagation dynamics of the weak fields at frequencies ω1 ± δ. It is useful to write the linear susceptibilities
as their real and imaginary parts χ = χ′ + iχ′′. The propagation constant of two weak fields within the medium
is given by k3,4 = (ω1 ± δ)/υ3,4. Here υ3,4 are group velocities of two weak fields propagating through the system,
which is defined by υ = c/[n + ω(dn/dω)]. n(ω) is the refractive index experienced by each photon and is defined as
n =

√
1 + χ′. Therefore, the group velocity can be written as

υ3,4 =
c

1 + ω1
2

dχ′

dδ
dδ

dω3,4

. (21)

Combining Eq. (17) with (19) gives υ3 = υ4 which is as expected in such a two-level system. In the counter-propagating
geometrical scheme, the resulting wave-vector mismatch is

∆k = k3 − k4 =
2δ

υ3
. (22)

In the derivation of Eq. (22) we have expanded the propagation constants k3 and k4 to first order in δ using the
dispersion relations, and also used υ3 = υ4. However, in the copropagating case, the expansion of k3,4 must be carried
out up to the second order, i.e., the dispersion of group velocity. The bandwidth due to the group delay can be
estimated from Eq. (22) as ∆ωΦ ∼ υ3/2L. As mentioned above, the transmission profile is determined by χ′′. The
bandwidth, which is allowed to propagate, is then given by ∆ωtr =

√
c/ωpL[d2χ′′/dδ2].

Before we move to the next section, let us look at one example. Consider the 87Rb D2 line transition and the
parameters are: Ω1 = 26 MHz, ∆ = 2π × 40 MHz, γe = 2π × 6 MHz, γ2 = 2π × 3 MHz, γg = 2π × 0.26 MHz,
N = 2×1017 atoms/m3, and L = 1.5 mm. Then the refractive index n ≈ 1 and the group velocity υ = 3.55×105 m/s.
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The bandwidth resulting from the phase mismatching (or the dispersion) is ∆ωΦ = 0.12 GHz and the bandwidth due
to the transmission profile takes the value of ∆ωtr = 0.44 GHz. The linewidths of the triplet resonances are 18.8 MHz
(sidebands) and 1.61 MHz (central component). As we see, within this range, the two-photon bandwidth is mainly
determined by the linewidths of triplet structure instead of the transmission bandwidth or phase mismatching.

III. TWO-PHOTON STATE IN A TWO-LEVEL SYSTEM

In this section we will formulate the two-photon state generated from such a two-level atomic ensemble. In the
interaction picture the effective Hamiltonian is given by

Heff = ε0

∫

V
d3rχ(3)

3 E(+)
1 E(+)

2 E(−)
3 E(−)

4 + H.c., (23)

where V is the interaction volume illuminated by the retro-reflected pump beam and H.c. means the Hermitian
conjugate. The electromagnetic fields of the output beams are given by the quantized fields

E(+)
3 =

∑

'k3

E3a'k3
ei('k·'r−ω3t), E(+)

4 =
∑

'k4

E4a'k4
e−i('k·'r+ω4t), (24)

where Ej = i
√

h̄ωj/2ε0n2
jVQ, VQ is the quantization volume. The retro-reflected pump beam is taken to be a classical

plane wave,

E(+)
1 = E1e

i(k1z−ω1t), E(+)
2 = E1e

−i(k1z+ω1t+ϕ), (25)

where ϕ is the phase shift coming from the optical pathways. For simplicity we set ϕ = 2mπ where m is an integer. The
z direction is assumed to be parallel to the pump longitudinal propagation [see Fig. 1(b)]. In writing the Hamiltonian
(23) we have ignored the reflections from the system surfaces and further we made the rotating-wave approximation.

Since the nonlinearity is very small, the initial state of the generated photon pairs can be found from the first-order
perturbation theory in the interaction picture. The calculation of the state vector to first-order in perturbation theory
gives

|Ψ〉 = |0〉 − i

h̄

∫ ∞

−∞
dtHeff|0〉 = |0〉+

∑

'k3

∑

'k4

F (+k3,+k4)a†
'k3

a†
'k4
|0〉, (26)

where +k3 and +k4 are evaluated inside the medium, and a†
'kj

is the creation operator at the output surface of the medium

associated with the wave vector +kj . In general, |Ψ〉 will be a superposition of the vacuum state |0〉 and states with
many number of pairs of photons. On the RHS of Eq. (26), the first term is just the vacuum state which is not of
interest, while the second term is called the two-photon state. F is the spectral function, which is given by

F (+k3,+k4) = βδ(2ω1 − ω3 − ω4)Φ(∆kL)H(+α3, +α4, +ρ), (27)

For the detailed derivation of the spectral function F , one may follow the analysis given in Ref. [9]. The z integral
from −L to 0 over the length of the medium gives Φ(∆kL),

Φ(∆kL) =
1− e−i∆kL

i∆kL
, (28)

where ∆k = k3 − k4 is given in Eq. (22). The integral over the area A of the intersection of the beam cross section
and the medium gives

H(+α3, +α4, +ρ) =
1
A

∫

A
d2ρe−i('α3+'α4)·'ρ, (29)

where we assumed that A is independent of z. The time integral gives the Dirac δ function, which states the energy
conservation. In Eq. (27),

β = iπχ(3)
3 E2

1ω1, (30)
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which is the parametric gain index for perfect phase matching. β can be taken as a constant if it is sufficiently slowly
varying over the bandwidth of the parametric process. In the above derivations, we have assumed that the retro-
reflected pump beam is spatial constant over the interaction cross area A. To simplify the calculations, we also made
an additional approximation that the cross section of the laser beam is large enough so that diffraction effects can be
ignored. +α3 and +α4 are transverse mode vectors, respectively. +ρ is in the transverse plane normal to the longitudinal
axis z and is evaluated at the output surfaces of the medium.

Eq. (28) is called the longitudinal detuning function, which carries the information of phase mismatch in the
longitudinal direction over the entire medium. The natural spectral width of the two-photon state may be determined
by this longitudinal detuning function. Eq. (29) is called the transverse detuning function, which contains the
information of momentum conservation in the transverse direction. For small emission angles and short effective-
interaction-length (Leff) medium (i.e., Leff tan θ & κ, κ is a typical width in the transverse plane), the function
Φ(∆kL) is close to unity when H(+α3, +α4, +ρ) has a non-negligible value. Now H(+α3, +α4, +ρ) determines the two-photon
state properties. However, if Leff tan θ ' κ, the properties of the two-photon state are mainly determined by the
function Φ(∆kL). In the limit of a medium with infinite length and cross section, Φ and H both become δ functions.
Combining with the energy-conservation δ function, they form perfect phase matching conditions: 2ω1 = ω3 +ω4 and
+k3 − +k4 = 0. The phase-matching conditions arise from the fact that the parametric process is a coherent process in
which all parts of the medium contribute in phase. For the finite L, the wave-number condition is relaxed so that |∆k|
may vary over an interval of order 1/L. However, it should be noted that the range of bandwidth of generated paired
photons is also strongly determined by their linewidths as mentioned in Sec. II. The example examined in the previous
section has shown that the allowed two-photon bandwidth is mostly determined by their resonance linewidths. In
such a case, the longitudinal detuning function is close to unity and the properties of biphoton are mainly determined
by the optical response χ(3). Therefore, in the two-photon coincidence measurement, the pattern should reflect this
point, as discussed in the following section.

To simplify the following discussions, we further made another assumption that the cross section of the retro-
reflected pump beam is constant and large enough so that the transverse detuning function (29) becomes a δ function.
In this paper, we focus on the temporal correlation of the two-photon state and the wave vectors are replaced by wave
numbers.

IV. PHOTON COUNTING MEASUREMENT

In most experiments the two-photon correlation is the quantity of primary interest. To look at the two-photon
properties from a two-level system, we start with a simple experiment of photon coincidence counting measurement
[see Fig. 1(b)]. For completeness, the single-photon counting detection is provided in the Appendix. The polarization
effect of the generated fields are not taken into account. For simplicity, suppose that detector D1 detects photons
with frequency ω3 while photons with frequency ω4 fire detector D2.

The averaged two-photon coincidence counting rate is defined by

Rcc = lim
T→∞

1
T

∫ T

0
dta

∫ T

0
dtb〈Ψ|E(−)

a E(−)
b E(+)

b E(+)
a |Ψ〉M(ta − tb), (31)

where the free-space electromagnetic fields E(+)
j (j = a, b) are defined in analogy with Eq. (24) and they are evaluated

at detector Dj’s coordinates spatial position rj and trigger time tj . M(t) is the coincidence window function, which
is defined so that M = 1 for |t| < tcc and it goes to zero rapidly for |t| > tcc. For the experiment analyzed here tcc
is quite large and so we may take M = 1. In Eq. (31) the detector efficiencies are implicitly assumed to be unity. It
is most convenient to perform the calculations in the Heisenberg picture in which the state vector is the steady-state
output at the surfaces of the medium.

Using Eq. (26), the fourth-order field correlation function in (31) which describes the joint detection probability
can be written as

〈Ψ|E(−)
a E(−)

b E(+)
b E(+)

a |Ψ〉 = |〈0|E(+)
b E(+)

a |Ψ〉|2 = |A12(τa, τb)|2, (32)

where τj = tj − rj/c and rj is the optical path from the output surface of the medium to the jth detector (j = a, b).
In the following we choose ra = rb, i.e., the balanced optical pathways, to simplify the analysis. The function A12(τ)
is referred as the two-photon amplitude, or for short the biphoton.

Consider the case that there are no filters placed in front of the detectors. By substituting Eq. (24) into (32), one
obtains

A12(τ1, τ2) =
∑

ka

∑

kb

EkaEkbe
−i(ωaτ1+ωbτ2)〈0|akaakb |Ψ〉. (33)
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The discussion about the function of filters inserted in the system may follow the treatment analyzed in [9]. Next,
using Eq. (26) we find

〈0|akaakb |Ψ〉 =
∑

k3

∑

k4

F (k3, k4)δk3kaδk4kb . (34)

Substituting this into Eq. (33) and evaluating the summations using the Kronecker δ, we have

A12(τ1, τ2) =
∑

k3

∑

k4

Wk3k4χ
(3)δ(2ω1 − ω3 − ω4)Φ(∆kz)e−i(ω3τ1+ω4τ2). (35)

The functions which vary slowly over the bandwidth of the beams have been grouped into Wk3k4 . Now converting
the sums in (35) into integrals in the standard fashion,

∑

kj

→
V 1/3

Q

2π

∫
dkj

dωj
dωj =

V 1/3
Q

2π

∫
dωj

υj
. (36)

and using Eq. (22), the two-photon amplitude (35) becomes

A12(τ1, τ2) = We−iω1τ+

∫ +4

−+3

dδχ(3)
3 (δ)Φ

(
2δL

υ3

)
e−iδτ− , (37)

where τ+ = τ1 + τ2 and τ− = τ1 − τ2. 13 and 14 represent the lower and upper limits of the integral. In the above
expression, we have absorbed all the slowly varying quantities into W and put it out of the integral. The limits on
the integral may be taken to ±∞ since: 1) the longitudinal detuning function Φ is peaked around δ = 0 and has a
bandwidth of order υ3/2L, which is generally much smaller than ω1; and 2) the linewidths of the triplet spectrum
gives a much narrower bandwidth which controls the profile of biphoton. The integral in (37) is a Fourier transform of
the longitudinal detuning function times the profile of the third-order nonlinear susceptibility. In general, the pattern
of the two-photon amplitude is determined by both Φ and χ(3). However, the narrower bandwidth resulting from
either Φ or resonance linewidths will finally determine the feature of the two-photon correlation detection.

A. Narrow-Band Generation of Paired Photons

Let us consider the case of ∆ωΦ ' (Γ0, Γ), i.e., narrow-band generation. In such a case, the two-photon amplitude
(37) is mainly determined by the third-order nonlinear susceptibility profile, i.e.,

A12(τ1, τ2) = We−iω1τ+

∫ +4

−+3

dδχ(3)
3 (δ)e−iδτ− , (38)

Considering Ωe ' (γe, γg, γ2), the third-order nonlinear susceptibility (18) for the ω3 photons may be expanded
around the resonances ω1 and ω1 ± Ωe. Keeping the leading terms, one gets

χ(3)
3 =

Nh̄|dge|4Q0

ε0(∆ + iγ2)

[
1

(δ + iΓ0)(δ + Ωe + iΓ)
+

1
(δ + iΓ0)(δ − Ωe + iΓ)

]
. (39)

In the derivation of Eq. (39) we have applied (15) and (16). The analysis about two types of four-wave mixing
discussed in Sec. II is explicitly reflected in Eq. (39). In the square brackets, the first term indicates that the ω3 field
is resonant at angular frequencies ω1 and ω1−Ωe; while the second term shows that the resonances occur at frequencies
ω1 and ω1 + Ωe. These two processes destructively contribute to the total third-order nonlinear susceptibility χ(3)

3 .
One may check that in the large pump-detuning case, Eq. (39) is proportional to 1/Ω2

e∆. Since the two terms in the
square brackets in (39) contribute equally to the two-photon amplitude, we will keep only the first term by multiplying
the factor 2. After this treatment, substituting Eq. (39) into (38) and extending the limitations of the integral to
infinity, the two-photon amplitude now takes the form of

A12(τ1, τ2) = φ(τ+)θ(τ−), (40)
φ(τ+) = We−iω1τ+ , (41)

θ(τ−) =
[
e−Γ0τ− − eiΩeτ−e−Γτ−

]
Π(τ−). (42)
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Here Π(τ−) is the Heaviside function. Again, all the constants and slowly varying terms have been absorbed into
W and W ∝ 1/Ωe∆. In the derivation we have used the assumption of Ωe ' (γe, γg, γ2). The function θ(τ−) is a
damped Rabi oscillation with the oscillation period 2π/Ωe. If γg ≈ γ2 ≈ γ, then Γ = Γ0 and the function θ(τ−) has a
simple expression

θ(τ−) =
(
1− eiΩeτ−

)
e−γτ− , (43)

with a damping rate γ. The physics of Eq. (40) is understood as follows. Because the two-photon state is entangled,
the biphoton cannot be factorized into a function of τ1 times a function of τ2. The factor φ(τ+) describes the fact
that the pair can be generated at any time within the medium. If the pump laser were taken to be a wave packet
rather than a plane wave, this term would also become a wave packet with the coherence length of the pump with
the consequence that there would be a distribution of pump frequencies and wave numbers. The function θ(τ−) has
two contributions, one from the central component of the triplet resonances [Fig. 2(a)] and the other from sidebands
[Fig. 2(b)]. Each contribution has a Lorentzian lineshape. By choosing the different γg, γe, γ2, ∆ and Ω1, the function
θ(τ−) may exhibit photon bunching or anti-bunching effect. To see this, let us examine the two-photon coincidence
counting rate.

By using Eqs. (40)-(42), the two-photon coincidence counting rate (31) now becomes

Rcc(τ) = R0

[
e−2Γ0τ + e−2Γτ − 2 cos(Ωeτ)e−(Γ0+Γ)τ

]
, (44)

where R0 is the grouped constant and we have denoted τ− as τ . It should be noted that since the bandwidth of
biphoton is smaller than the spectral width of the detectors, the coincidence counting rate is simply the module-
squared two-photon amplitude. Eq. (44) shows a strong pairlike character and anti-bunching effect. The first term
in (44) corresponds to the central-component correlation, the second one to sideband-sideband correlation, and the
third appears as an interference between two previous terms. In a large-detuning or intense pump case, the triplet
resonances may be well separated. Under such a situation, by choosing proper filters one can study the temporal
correlations between photons emitted in given lines of the spectrum. If γg ≈ γ2 ≈ γ, Eq. (44) reduces to a simple
form,

Rcc(τ) = 2R0

[
1− cos(Ωeτ)

]
e−2γτ . (45)

In the large-detuning and weak pump excitation case, the function Rcc vanishes as τ → 0, exhibiting the photon
anti-bunching effect. As τ → ∞, Rcc also approaches to zero. The oscillation period is determined by the effective
Rabi frequency Ωe. The damping rate is equal to 2γ as shown in (45).

In the case of γg /= γ2, the whole damping rate will be determined by twice of min[γg, γ2] [see Eq. (44)]. The observed
anti-bunching effect is due to the destructive interference between the two types of four-wave mixing processes as
discussed in Sec. II. Considering the realistic situation, the generated paired photons can trigger either of two detectors.
The diagram of the two-photon coincidence counting rate is therefore expected to be a symmetric distribution. In
Eq. (44), if Γ0 & Γ the two-photon correlation measurement will show a perfect photon anti-bunching effect. When
the pump coincides with the atomic transition, in the weak coherent pumping case the two-photon correlation shows
only the photon anti-bunching effect. There is no correlation between the central component and sidebands in the
second-order coherence, but does show correlation at the third-order and higher-order coherence.

At a fixed position, the normalized second-order quantum coherence function depends only on the time difference
τ = τ1 − τ2:

g(2)(τ) =
〈E(−)

a (t)E(−)
b (t + τ)E(+)

b (t + τ)E(+)
a (t)〉

〈E(−)
a (t)E(+)

a (t)〉〈E(−)
b (t + τ)E(+)

b (t + τ)〉
,

which is interpreted as the conditional probability that if a photon is detected at t the other one will be detected at
t+τ . Considering the two-photon generation in the two-level system, this normalized second-order quantum coherence
function becomes

g(2) = 1 +
Rcc(τ)

R2
R

. (46)

Here RR represents the linear Rayleigh scattering rate for one photo-detector. For a single-transverse-mode fiber, in
the case of ∆' (γe, γg, γ2, |Ω1|), RR takes the form

RR =
λ2

1

8πNQ
γe〈Qee〉NL =

πh̄|deg|2|Ω1|2NL

4ε0Ω2
eλ1

, (47)
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where NQ takes the value of 2 because of the linear polarizers placed before fiber coupling and 〈Qee〉 = 2|Ω1|2/(γ2
e +

4Ω2
e) is the population distributed in the excited state |e〉. In the second derivation we have used γe = 8π2h̄|deg|2/ε0λ3

1
with λ1 = 2πc/ω1. As we see in (47), the single-photon counting rate from the linear Rayleigh scattering (of the pump
beam) is proportional to the pump power times the optical depth but inversely proportional to the squared effective
Rabi frequency. Recall that the efficiencies of two detectors are assumed to be 100%. The constant R0 in Eq. (44)
[and (45)] is

R0 =
(

h̄|dge|2|Ω1|2ω1Q0NL

4πcε0∆Ωe

)2

, (48)

where Q0 is given in Eq. (10) and may be approximated as unity. Therefore, from Eqs. (44) and (46)-(48), one can
find that

g(2)(τ) = 1 +
(

2
√

2Ωe

π∆

)2[
cosh(Γ0 − Γ)τ − cos(Ωeτ)

]
e−(Γ0+Γ)τ , (49)

where cosh(x) is a hyperbolic function. To get some insights in Eq. (49), let us look at the visibility, which is defined
as

Vvis =
g(2)
max − g(2)

min

g(2)
max + g(2)

min

,

where g(2)
max and g(2)

min correspond to the maximum and minimum of g(2)(τ), respectively. From Eq. (49), at τ = 0 or
τ = +∞, g(2) approaches the minimum at 1. The maximum can be numerically found by solving the transcendental
equation. By examining Eq. (49), it is easy to find that the maximum creases as well as the increase of the effective
Rabi frequency (e.g., increasing the pump detuning) and vice versa. Therefore the maximum of g(2) is bounded in
the range 1 to 1 + 2(2

√
2Ωe/π∆)2. Using the concept of the visibility given above, one can obtain

0 < Vvis <
( 2
√

2Ωe
π∆ )2

1 + ( 2
√

2Ωe
π∆ )2

. (50)

In the weak-optical-excitation case, Ωe is approximated as ∆. The inequality in (50) is then simplified as

0 < Vvis <
(2
√

2
π )2

1 + ( 2
√

2
π )2

= 44.8%. (51)

As seen in (50), the visibility increases as well as increasing the ratio of Ωe/∆. The maximum of Vvis is limited to be
below 45%. In the next subsection we will compare the results obtained above with the experimental ones.

Before the preceding, there is a simplified physical picture to understand the biphoton in the two-level system.
Without including the linewidths of the triplet structure, the two-photon state can be written as |ψ〉 = |δ = 0, δ =
0〉− |δ = −∆, δ = ∆〉, where the first term characterizes the correlated photons generated from the central component
and the second term indicates the paired photons generated from the two sidebands. The “-” sign indicates the phase
difference between two types of processes shown in Fig. 2. The biphoton wave packet then becomes ψ(t1, t2) =
1− ei∆(t1−t2). Therefore, the non-normalized temporal correlation is given by |ψ(t1, t2)|2 = 2[1− cos ∆(t1− t2)] which
coincides with the essential result derived in Eq. (45).

B. Comparison between Experiment and Theory

Cold atoms with negligible Doppler broadening is a perfect source to study the biphoton generation in a two-level
system. The experiments were done with cold 87Rb atoms prepared by a standard six-beam magneto-optical trap
(MOT) [24]. In the experiment done by Harris’ group at Stanford [15], the pump laser, blue detuned ∆ from the
D2 line transition |5S1/2,F = 2〉 → |5P3/2, F′ = 3〉, is linearly polarized and collimated to overlap the atomic cloud.
The pump power was 770 µW with a detuning 2π× 83.6 MHz. The experimental data of the two-photon coincidence
measurement is illustrated in Fig. 4(a) from [15]. As we see, the coincidence counts show a damped Rabi oscillation.
At the delay time τ = 0, the interference of contributions from the central component and sidebands in the triplet
resonance structure leads to anti-bunching. The temporal width of the two-photon coincidence is more than 300 ns.
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FIG. 4: (color online) (a) Experiment: Coincidence counts as a function of the time delay between detected photons [15]. (b)
Comparison of g(2)(τ): The red line is the experimental data and the blue line gives the theoretical simulation.

The long tail is determined by γg as given in Eq. (44). The background coincidences are due to the linear Rayleigh
scattering of the pump beam.

The comparison between theory and experiment is given in Fig. 4(b) where the red line is the experimental data
and the blue line is the theoretical simulation. Both theory and experiment show an agreement with each other. It
was found that the oscillation period is indeed determined by the effective Rabi frequency Ωe =

√
∆2 + |Ω1|2. In the

experiment, since the pump detuning (∆ = 2π× 83.6 MHz) is certainly greater than the Rabi frequency of the pump
(|Ω1| = 26 MHz), the effective Rabi frequency Ωe is dominated by the pump detuning ∆ rather than by the Rabi
frequency |Ω1| of the pump beam. The damping rate is mainly determined by the linewidth of central component
of the triplet, γg. The parameters in the simulation were chosen as γ2 = γe/2 and γg = 0.15γe. γg is obtained
by considering the pump linewidth (∼300 KHz), MOT temperature (∼300 KHz), and inhomogeneous magnetic field
broadening (∼1.4 MHz). The visibility shown in the experiment is 31% and the theoretical prediction is 40%. The
difference of the visibilities between theory and experiment is because, in the simulation we did not consider the
absorption and loss. When including the absorption and loss occurring the atomic system, we can obtain a better
agreement between theory and experiment [25]. [In [25], the coupled Maxwell’s equations are solved for the two weak
generated fields and the results also show an agreement with the experiment.]

To fit the experimental data using the obtained theory, we found that: 1) As the pump power increases, both the
dipole dephasing rate γ2 and the linewidth of the ground state γg become greater; and 2) The long tail background
in the two-photon correlation measurements are due to the linewidth of the inhomogeneous-broadened ground state,
γg.

To further verify the validity of the theory, it is necessary to recover the conventional input-output four-wave mixing
in a two-level system. Suppose that in the input-output experiment, the field with the frequency ω3 has an initial
input. We measure the generated field at frequency ω4 in the backward geometry, which gives

〈E(−)
4 E(+)

4 〉 = R

∫
dδ|χ(3)

4 (δ)|2. (52)

χ(3)
4 (δ) is the total susceptibility as given in Eq. (20) and R is a constant. In the above derivation, we have assumed

that the input ω3 field is very weak. Eq. (52) is exactly the same as the conventional result [18]. The reason is
that in such a measurement which is the first-order coherence, the phase information is lost and the time-order is not
detected.
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V. SUMMARY

In summary, we have studied the nature of the two-photon state or biphoton created in an open two-level system.
The comparison between theory and experiment shows a good agreement. To simplify the discussions we have assumed
the idealized two-level medium and ignored the Doppler effect and quantum Langevin noise. In our simple model,
we also ignore polarization effects. It was found that the two-photon bandwidth is mainly determined by the atomic
linewidths, because the phase matching is satisfied over the entire atomic bandwidths. The temporal correlation
measurement of biphoton shows damped Rabi oscillations. The oscillation rate is determined by the effective Rabi
frequency and the damping rate is determined by the linewidth of central component of triplet resonances in a two-
level system. The triplet resonances of a two-level system lead to two kinds of four-wave mixing processes. As shown
in Eq. (44), the first term in brackets is the correlation due to the central resonant components, the second term
stands for the correlation between sidebands photons, and the third term is an interference. The interference in the
two-photon coincidence measurement shows a photon anti-bunching-kind effect. In Fig. 2(a), the correlations between
photons may exhibit photon bunching as discovered by Hanbury-Brown and Twiss. In Fig. 2(b), correlated sideband
photons are produced after absorbing two counter-propagating pump photons. In the large-detuning or strong pump
case, the triplet resonances are well separated. In such a case, we can see the separated correlations from the central
components or between sidebands by using proper filters [19]. The linear Rayleigh scattering of the pump beam
provides the background noise in the experiment. There is no correlation between two photons, one from the central
component and the other from one of the sidebands, in the second-order coherence. The visibility of the normalized
second-order quantum coherence function g(2)(τ) in such a two-level system increases along with the increase of the
effective Rabi frequency, but has an upper limit at 45%.
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APPENDIX A: THE SINGLE-PHOTON COUNTING RATE

To discuss the single-photon properties of the radiation, we consider an experiment like that shown in Fig. 1(b)
with detector D2 removed. The average counting rate is given by

Rs = lim
T→∞

1
T

∫ T

0
dta〈Ψ|E(−)

a E(+)
a |Ψ〉. (A1)

The second-order field correlation function in (A1) may be written as

〈Ψ|E(−)
a E(+)

a |Ψ〉 =
∑

'k

|〈0|a'kE(+)
a |Ψ〉|2. (A2)

Using Eq. (25), one can obtain

〈0|a'kE(+)
a |Ψ〉 =

∑

'ka

∑

'k3

∑

'k4

e−iωaτ1F (+k3,+k4)δ'k3'ka
δ'k'k4

. (A3)

Substituting this into (A2), it gives

〈Ψ|E(−)
a E(+)

a |Ψ〉 =
∑

'k

VQ

(2π)3
∣∣∣
∑

'k3

e−iω3τ1F (+k3,+k)
∣∣∣
2
. (A4)

To simplify the calculation, we treat the transverse detuning function (28) as a δ function so that the wave vectors
can be replaced by wave numbers. To evaluate the Dirac δ functions in F (k3, k), a summation over a wave number
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is converted into an angular frequency integral as given by Eq. (35). Then the single-photon counting rate (A1)
becomes

Rs = Rs0

∫
dδ

∣∣∣χ(3)
3 Φ

(2δL
υ3

)∣∣∣
2
. (A5)

Rs0 absorbs all the slowly varying terms and constants. As seen from Eq. (A5), the single-photon counting rate is
independent of time as expected.
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