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Gaussian States and Quantum Imaging

= (Gaussian states
= classical versus quantum

= Optical coherence tomography (OCT)

= conventional versus quantum versus phase-conjugate OCT

= Ghost imaging

= signal-to-noise ratio and image-acquisition time

= Nonlocal dispersion cancellation
= biphoton versus mixed-state entangled versus classically correlated

= Sub-Rayleigh imaging

= improving spatial resolution with classical-state light
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Unified Gaussian-State Framework

Gaussian-state imaging

Thermal-state
imaging
(classical)

Biphoton-state
imaging
(quantum)

= (Gaussian states include...
= laser light, LED light, sunlight, i.e., “classical states”
= low-flux biphoton output from SPDC, viz., a “quantum” state

= (Gaussian states are...
= characterized by their mean values and coherence functions
= closed under linear transformations like free-space diffraction
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Properties of Phase-Insensitive Coherence

= Phase-insensitive coherence at source

~ A 2P . 2 2 2 . 2 2y 1 \2 2
(Ed(p1,t1)Eo(payta)) = ¢ (Ip1 *+lp2 1) /a5 1oy —pa|? /20 = (t1—12)? /2T
= spatial coherence is = temporal coherence is
quasiplanatic monochromatic

= produces second-order
interference

z=20 z=1L
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Properties of Phase-Sensitive Coherence

= Phase-sensitive coherence at source
. . 2P

E tE ) = 25 o= UpiP+lpal?) /ag—p1—pa|? /205 o~ (t1—t2)? /2T
(Eo(py,t1)Eo(past2)) wa%e e

= spatial coherence is = temporal coherence is
quasibiplanatic bichromatic

I >

0 ()

= does not produce second-order
interference

z=0 z =1L
i CiPS: Erkmen & Shapiro, Proc SPIE 6305, 6305G (2006)
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Optical Coherence Tomography
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Mean Signatures from a Single Mirror

= (Gaussian source power spectrum, S(Q) = Pgy/2m/Q% e Y /2%
= Broadband conjugator, V(Q)=V =|V]e"v
= Weakly reflecting mirror, H(Q) = reil(wotD)Tot02%/2] - p| < 1.
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llir CiPS: Erkmen & Shapiro, PRA 74, 041601(R) (2006)
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Phase-Conjugate OCT Experiment
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Axial Resolution and Dispersion Cancellation
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Interference envelope width

Measured (FWHM) = 890 um

Width would be 3.0 mm without
signal dispersion cancellation

Le Gouet et al.,
submitted (2009)
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Optical Coherence Tomography Discussion

* Improvements in Q-OCT and PC-OCT are due to phase-
sensitive coherence between signal and reference beams

= Entanglement not the key property yielding the benefits

= Q-OCT: H*(—Q)H (2) obtained from an actual sample
Illumination and a virtual sample illumination

= PC-OCT: H*(—Q)H () obtained via two sample illuminations

= Double-pass conventional illumination can achieve the 2x
improvement in axial resolution but at the expense of 2x
resolution loss due to dispersion

= PC-OCT combines Q-OCT's resolution and dispersion
cancellation with C-OCT’s high SNR
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Four Types of Active Ghost Imaging

Biphoton ghost imaging Pseudothermal ghost imaging
_ pinhole detector, center p, rotating thole debect .
PBS D A (scanning) ground , Do (seczrcnﬁzg()jen er py
5 5 i lass ;
SPDC ) ES-(N) Elﬂ? - Elp, N Es(p,t)  Eilpt)
; i (t) cw laser -\- - L)
> )
Enlp,1) IA T Enlp, t)l T 1
L-m free SPace = C(pl) Scarcelli et al., PRL L-m free space A C(pl)
propagation correlator——p 77, 063602 (2006) ‘_propagation correlator >
Es(p,t) \ object, T(p) 200 §1 object, T(p)
bucket detector (fixed) Pittman et al., PRA bucket detector (fixed)
int) 52, R3429 (1995) i (t)
Spatial light modulator ghost imaging
S{?aﬁsl _ pinhole detector, center p,
lg H i - L] L
modulator S Computational ghost imaging

E(p,t)\. Es(p,t Ei(p,t) i
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A 4
Q bucket, detector (fixed) Erkmen & Shapiro, PRA 77, 043809 (2008);
ia(t) Erkmen & Shapiro, PRA 79, 023833 (2009);
. e . Shapiro, PRA 78, 061802(R) (2008).
III" CIPS: " www.rle.mit.edu/qoptics




Gaussian-State Image Resolution and Contrast

= Far-field operation:
biphoton koa% /2L < 1, pseudothermal kgagpg/2L < 1

= Object within field of view:
biphoton /2oL /7 pg, pseudothermal \oL/mpq

= Photocurrent cross-correlation functions
background

4 N
/ dp |T(p))’
Ao

+ C:l:/ dpe""’li”'z/”ilT(p)IZI
\AZ

_/

(C(p1)) = ¢"mmA (%) 2

L

——
ghost image

coherence radius p;, = \gL/mag

biphoton C, > 1, pseudothermal C_ =1
. i Erkmen & Shapiro, PRA 77, 043809 (2008)
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Signal-to-Noise Ratio Analysis

= Time average used to approximate ensemble average

= Source coherence time: 1

= Photodetector bandwidth: {1g

= Cross-correlation integration time: 77

= Broadband biphoton imaging: Qg7 < 1,Q7T; > 1

= Narrowband pseudothermal imaging: g7y > 1,7y < 17

= SNR analysis done via Gaussian moment factoring

iy CiPs: "
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Signal-to-Noise Ratio Behavior

Nonclassical Source Pseudothermal Source

SNR To/T;

(T = 0.001

PTopi/at PTos} /a3

Erkmen & Shapiro, PRA 79, 023833 (2009)
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Far-Field Propagation Image-Acquisition Times

= Broadband biphoton source
= T2 =time to achieve target SNR value

= Narrowband, high-brightness, pseudothermal source
= T/9=time to achieve target SNR value

= For the same target SNR values

TI(q) _ \/27T3|T(p1)|4 ,0% p% a% Téq)
19~ PPl Ay Ay par g 70

B hd S0 Sl e - A
anothangdample  ~8|T|2/n? 10-2 107 108 108

~ 8 x 1T iy
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Ghost Imaging Discussion

= (Gaussian-state framework unifies ghost-imaging analyses

= Far-field resolution behavior is identical for biphoton and
pseudothermal sources

= Biphoton source enjoys slight field-of-view advantage over
pseudothermal source

= Biphoton source enjoys significant contrast advantage over
pseudothermal source

= Broadband biphoton source may have significant image-

acquisition time advantage over narrowband, bright,
pseudothermal source

i CiPS: .
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Nonlocal Dispersion Cancellation

= Biphoton illumination enjoys cancellation of group-velocity
dispersion with opposite signs in nonlocal manner

ir(t)

E7(t)

dispersive

filter hy(t)

IEE“(t)

SPDC

Franson, PRA 45, 3126 (1992)

Efg“(ti

dispersive

filter hg(t)

rout
S

L (t)[jiS(t)

= Classical-state light — even classical phase-sensitive light —
cannot reproduce this phenomenon

iy CiPs:

17

Franson, arXiv:0907.5196 [quant-ph];
Franson, arXiv:0909.2846 [quant-ph]
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Dispersion Cancellation with Phase-Sensitive Light

= Consider phase-sensitive Gaussian state light source

0 S () = 7P/Q+(G — 1), for |w|<Q, K =8, R

KK
s S (w) = 7P/Q +i\/7P/Q, for |w] <O
dispersive C(T) = q2772 (P + (G — 1)Q/7r)2
filter hp(t) Sin(QT) 5
N + ¢*n*(P* + PQ/W)( o )
ER(t) T

.. - '
phase-sensitive Eiqn(tg dispersive L™ (t)mis(l)
light source filter hs(t)

= Coincidence peak has same width but background increases
as state progresses from pure-entangled to mixed-entangled
to classical-maximally-correlated to classical-partially-
correlated

TH e Shapiro, arXiv:0909.2514 [quant-ph]
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Ladar Imaging: Monostatic Operation

= Diffraction-limited transmitter:
power Pr, diameter Dr, wavelength A

= Diffraction-limited receiver: diameter Dpg
= Speckle-averaged focal-plane intensity

Target intensity-reflectivity

/ 4P T 9 ‘ \ /
10'f) = —5 (FrFr)* [ A0 [pr(0)T (OL)lpr(6’ - 6)
T H(_/ \ ) N v y,
Fresnel-number Transmitter Receiver antenna-
product antenna-pattern pattern

L = target range, f = receiver focal length

2.J, (7D ’
pz(0) = ( ! (17; |‘2||3|)\/)\)) = point-spread function
Ty
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Floodlight lllumination with Array Photodetection

= When entire target is illuminated

4 Pr
ﬂ'D%

I(O’f) ~ (foR)Q /dO T(OL);DR(OI — 9)

= Resolution is the receiver's Rayleigh limit

IAO|L = 1.22\L/Dp at first zero of pr(A8)

when not limited by the photodetection array
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Pinpoint lllumination with Precision Raster Scan

= When we illuminate a sequence of angles {0, } in a precision
raster scan, the received power is

4PT 7TD2
Pp = / d0'fP1(0'f) = —5 Fp——
m D2, 1

/ 40 pr(6; — 6)T (6L)

for illumination at @,

= If D > Dp we resolve the target at the transmitter’s
Rayleigh limit

IAB|L = 1.22\L/ D7 at first zero of pr(A8)
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Sub-Rayleigh Imaging with Classical-State Light

= |lluminate a randomly-chosen @, using Dt > Dpg

= Probability of N-photon coincide at (rk, tk) averaged over
probability density p(6;)for 8,

PN(rk'a tk) ~

d6 77})TTFd Ad 2 N
ip(0;) b 12 fRT(Oz’L)pR(T’k/f —0,) < 1

= Resolution exceeds the receiver’'s Rayleigh limit

Giovannetti et al., PRA 79, 013827 (2009)
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Sub-Rayleigh Imaging

= Point-spread function comparison

1
0.8
0.6

0.4

0.2
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Sub-Rayleigh Imaging

magnification: ~0.5

LASER

1 1 1 1 1 1 1

MOVABLE LIGHT SOUR

OBJECT i
DIFFRACTION SPAD

LIMITED LENS ARRAY

aperture diameter: 32 x 32 pixels
200 um 100 um pitch
1% efficiency

CMOS SPAD
developed by
Politecnico di Milano

beam diameter: 40 um
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CMOS SPAD Array
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Sub-Rayleigh Imaging: Preliminary Results

i cips:

Random manual laser beam scanning at object
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Sub-Rayleigh Imaging: Preliminary Results

0 0 0
0O 5 10 15 20 25 30 0 5 10 15 20 25 N 0 5 10 15 20 25 30

Accumulate data Post-processing: Post-processing:
from all N-th power of (1) for each frame,
measurement frames Left-panel data set pixel value to 1
(N=10) if exactly N counts;

otherwise set to 0

(2) sum all
post-processed frames
(N=10)

i CiPS: .
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Sub-Rayleigh Imaging Discussion

= Transmitter and receiver antenna patterns combine to
determine image resolution of an active sensor

= N-photon coincidence counting does not improve resolution
with floodlight illumination

= Random scanning with high-resolution beam yields resolution
iImprovement with N-photon coincidence counting

IAB| ~| AORagleigh|/V N

= Efficiency issues exist

IlliT CiPS: 2 o
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Gaussian States and Quantum Imaging

= (Gaussian states:
= include the principal sources of interest for imaging
= phase-insensitive and phase-sensitive correlations contrasted
= Phase-conjugate optical coherence tomography
= offers the advantages of Q-OCT and C-OCT
= proof-of-principle experiment completed
= Ghost imaging
= SNR analysis biphoton and pseudothermal cases completed
= experiments on SLM and computational ghost imaging beginning

= “Nonlocal” dispersion cancellation
= phase-sensitive coherence propagation is root cause of this effect
= Sub-Rayleigh imaging

= classical-state imaging with random scanning can exceed the
Rayleigh limit of the receiver

= preliminary experimental results support the theory

IliT CiPS: 2
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PC-OCT for Layer Measurement

{ Partially reflecting thickness: 1.74 mm
household mirror n~1.5
glass-Al
interface
air-glass
interface double reflections
o in glass
3
g 10 spurious signals
g ] (interference filter)
3
5
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5 :
N 2.63 5.25
10 —— T
2 0 2 4 6 .
Ref del Le Gouét et al.,
eference delay (mm) submitted (2009)
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