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Gaussian States and Quantum Imaging 

  Gaussian states 
  classical versus quantum 

      

  Optical coherence tomography (OCT) 
  conventional versus quantum versus phase-conjugate OCT 

  Ghost imaging 
  signal-to-noise ratio and image-acquisition time 

  Nonlocal dispersion cancellation 
  biphoton versus mixed-state entangled versus classically correlated 

  Sub-Rayleigh imaging 
  improving spatial resolution with classical-state light 
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Unified Gaussian-State Framework 

  Gaussian states include… 
  laser light, LED light, sunlight, i.e., “classical states” 
  low-flux biphoton output from SPDC, viz., a “quantum” state 

  Gaussian states are… 
  characterized by their mean values and coherence functions 
  closed under linear transformations like free-space diffraction 

Gaussian-state imaging 

Thermal-state 
imaging 

(classical) 

Biphoton-state 
imaging 

(quantum) 
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Properties of Phase-Insensitive Coherence 
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  Phase-insensitive coherence at source 

  spatial coherence is   
quasiplanatic 

  temporal coherence is 
monochromatic 

  produces second-order 
interference 
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Properties of Phase-Sensitive Coherence 
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  Phase-sensitive coherence at source 

  spatial coherence is 
quasibiplanatic 

  temporal coherence is 
bichromatic 

Erkmen & Shapiro, Proc SPIE 6305, 6305G (2006) 

  does not produce second-order 
interference 
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Optical Coherence Tomography 
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Jeffrey H. Shapiro 

Research sponsored by the U.S. Army Research Office,  
the Defense Advanced Research Projects Agency, and 
the W. M. Keck Foundation Center for Extreme Quantum Information theory 

Q-OCT	

C-OCT	



PC-OCT	



Erkmen & Shapiro, PRA 74, 041601(R) (2006) 

Abouraddy et al., PRA 65, 053817 (2002); 
Nasr et al., PRL 91, 083601 (2003)  
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  Gaussian source power spectrum,	


  Broadband conjugator,	


  Weakly reflecting mirror,                                    with	



Mean Signatures from a Single Mirror 

Erkmen & Shapiro, PRA 74, 041601(R) (2006) 
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Phase-Conjugate OCT Experiment 

SPDC 
1570 nm 

1550 nm 

λ/4 Target 

Reference 
mirror 

Det 2 Det 1 

BS 

Δλ = 5.9 nm 
λc = 1550 nm 

PBS 

CWDM 2 

LEAF 
(100 m) 

(50 m) 

SMF-28 

1550 nm 

CWDM 1 

Pump 

Pump	



Le Gouët et al., 
OE 17, 17874 

(2009) 

OPA 

600 pairs/pulse 
5-nm bandwidth 

~20 dB gain 
at 2 W pump 
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Axial Resolution and Dispersion Cancellation 

Reference 
mirror 

Target 
double 
pass 

ΔzT = 450 µm 
ΔzR ≈ 2(ΔzT) 

2x axial resolution enhancement: 

Interference envelope width 

Measured (FWHM) = 890 µm 

Width would be 3.0 mm without  
signal dispersion cancellation 

Le Gouët et al., 
submitted (2009) 



www.rle.mit.edu/qoptics	



Optical Coherence Tomography Discussion 
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•  Improvements in Q-OCT and PC-OCT are due to phase-
sensitive coherence between signal and reference beams 

  Entanglement not the key property yielding the benefits 

  Q-OCT:                       obtained from an actual sample 
illumination and a virtual sample illumination 

  PC-OCT:                       obtained via two sample illuminations 

  Double-pass conventional illumination can achieve the 2x 
improvement in axial resolution but at the expense of 2x 
resolution loss due to dispersion 

  PC-OCT combines Q-OCT’s resolution and dispersion 
cancellation with C-OCT’s high SNR 
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Four Types of Active Ghost Imaging 

11	



Biphoton ghost imaging Pseudothermal ghost imaging 

Spatial light modulator ghost imaging 

Computational ghost imaging 

Erkmen & Shapiro, PRA 77, 043809 (2008);  
Erkmen & Shapiro, PRA 79, 023833 (2009); 
Shapiro, PRA 78, 061802(R) (2008). 

Pittman et al., PRA 
52, R3429 (1995)  

Scarcelli et al., PRL 
77, 063602 (2006)  
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Gaussian-State Image Resolution and Contrast 
  Far-field operation: 

  Object within field of view: 

  Photocurrent cross-correlation functions   

Erkmen & Shapiro, PRA 77, 043809 (2008) 

ghost image 

background 
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Signal-to-Noise Ratio Analysis 

  Time average used to approximate ensemble average 

  Source coherence time: 

  Photodetector bandwidth: 

  Cross-correlation integration time: 

  Broadband biphoton imaging: 

  Narrowband pseudothermal imaging: 

  SNR analysis done via Gaussian moment factoring 
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Signal-to-Noise Ratio Behavior 

Erkmen & Shapiro, PRA 79, 023833 (2009) 

Nonclassical Source Pseudothermal Source 
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another example 
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Far-Field Propagation Image-Acquisition Times 

  Broadband biphoton source 
  TI(q) = time to achieve target SNR value 

  Narrowband, high-brightness, pseudothermal source 
  TI(c) = time to achieve target SNR value 

  For the same target SNR values 

an example 
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Ghost Imaging Discussion 

  Gaussian-state framework unifies ghost-imaging analyses 

  Far-field resolution behavior is identical for biphoton and 
pseudothermal sources 

  Biphoton source enjoys slight field-of-view advantage over 
pseudothermal source  

  Biphoton source enjoys significant contrast advantage over 
pseudothermal source 

  Broadband biphoton source may have significant image-
acquisition time advantage over narrowband, bright, 
pseudothermal source 
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  Biphoton illumination enjoys cancellation of group-velocity 
dispersion with opposite signs in nonlocal manner 

  Classical-state light — even classical phase-sensitive light — 
cannot reproduce this phenomenon 

Nonlocal Dispersion Cancellation 
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Franson, PRA 45, 3126 (1992) 

Franson, arXiv:0907.5196 [quant-ph]; 
Franson, arXiv:0909.2846 [quant-ph] 
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  Consider phase-sensitive Gaussian state light source 

  Coincidence peak has same width but background increases 
as state progresses from pure-entangled to mixed-entangled 
to classical-maximally-correlated to classical-partially- 
correlated 

Dispersion Cancellation with Phase-Sensitive Light 
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Shapiro, arXiv:0909.2514 [quant-ph] 
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Ladar Imaging:  Monostatic Operation 

  Diffraction-limited transmitter: 

  Diffraction-limited receiver: 

  Speckle-averaged focal-plane intensity 
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Fresnel-number 
product	



Transmitter 
antenna-pattern	



Receiver antenna-
pattern	



Target intensity-reflectivity	
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Floodlight Illumination with Array Photodetection 

  When entire target is illuminated 

  Resolution is the receiver’s Rayleigh limit 

 when not limited by the photodetection array 
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Pinpoint Illumination with Precision Raster Scan 

  When we illuminate a sequence of angles          in a precision 
raster scan, the received power is 

 for illumination at 

  If                      we resolve the target at the transmitter’s 
Rayleigh limit  
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Sub-Rayleigh Imaging with Classical-State Light 

  Illuminate a randomly-chosen      using 

  Probability of N-photon coincide at               averaged over 
probability density           for 

  Resolution exceeds the receiver’s Rayleigh limit     
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Giovannetti et al., PRA 79, 013827 (2009) 
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Sub-Rayleigh Imaging 

  Point-spread function comparison 
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Sub-Rayleigh Imaging 

beam diameter: 40 µm 

aperture diameter: 
200 µm 

32 x 32 pixels 
100 µm pitch 
1% efficiency 

CMOS SPAD 
developed by 

Politecnico di Milano 

magnification: ~0.5 
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CMOS SPAD Array 

100 µm	
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Sub-Rayleigh Imaging:  Preliminary Results 

Random manual laser beam scanning at object 
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Sub-Rayleigh Imaging:  Preliminary Results 

Accumulate data  
from all  

measurement frames 

Post-processing: 
N-th power of  

Left-panel data 
(N=10) 

Post-processing: 
(1) for each frame,  
set pixel value to 1 
 if exactly N counts;  
otherwise set to 0 

(2) sum all  
post-processed frames 

(N=10) 
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Sub-Rayleigh Imaging Discussion 

  Transmitter and receiver antenna patterns combine to 
determine image resolution of an active sensor 

  N-photon coincidence counting does not improve resolution 
with floodlight illumination 

  Random scanning with high-resolution beam yields resolution 
improvement with N-photon coincidence counting 

  Efficiency issues exist 
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Gaussian States and Quantum Imaging 
  Gaussian states: 

  include the principal sources of interest for imaging 
  phase-insensitive and phase-sensitive correlations contrasted 

  Phase-conjugate optical coherence tomography 
  offers the advantages of Q-OCT and C-OCT 
  proof-of-principle experiment completed 

  Ghost imaging 
  SNR analysis biphoton and pseudothermal cases completed 
  experiments on SLM and computational ghost imaging beginning 

  “Nonlocal” dispersion cancellation 
  phase-sensitive coherence propagation is root cause of this effect 

  Sub-Rayleigh imaging 
  classical-state imaging with random scanning can exceed the 

Rayleigh limit of the receiver 
  preliminary experimental results support the theory 
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PC-OCT for Layer Measurement 

Partially reflecting 
household mirror 

air-glass 
interface 

glass-Al 
interface 

double reflections 
in glass 

thickness: 1.74 mm 
n ~ 1.5 

spurious signals 
(interference filter) 

Le Gouët et al., 
submitted (2009) 


