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Quantum Laser Radar
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Pictorial View of Amplification of Coherent 
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• Simulation of the amplification of a gray-scale image 

in the shot-noise limited regime

• Random zero-mean Gaussian noise is added to 

represent detector noise
– A valid model when the received signal photon number per 

pulse or per inverse bandwidth is not too small

• Photocurrents in the unamplified and amplified cases 

are scaled appropriately for fair comparison. 

Simulation of Preamplified Photodetection 
of Shot-Noise Limited Signals
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• For G  = 1 (no preamplification)
– SNRIN = Ns (shot-noise limited signal)

– (Ns)2 = Ns,  SNROUT = Ns

– NF = SNRIN / SNROUT = 1/

• For G > 1
– SNRIN = Ns and (Ns)2 = Ns

– Output = GNs. Find (Ns)2G from:

– NF = SNRIN / SNROUT = Ns / [(GNs)2 / (Ns)2G]

…or…
– (Ns)2G  = NF (GNs)2 / Ns =   (Ns)2 G2 NF

Simulation of Preamplified Photodetection 
of Shot-Noise Limited Signals
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Simulation of Preamplified Photodetection 

of Shot-Noise Limited Signals

• Noise Figure (NF): [PRL 83 (10), pp.1938-1941, Choi, Vasilyev & Kumar]

– NFtot = NFamp + (1 - ) / (G)
– NFPSA = 1    (NFPSA)tot =  1 + (1 - ) / (G)
– NFPIA = 2  1/G    (NFPIA)tot =  2 (1 – 1/G) + 1 / (G)

• Also, the detected signal in each case is different. 
So, we scale PSA & PIA noise by G2 in order to fairly 
compare the photo-current between the three cases.

• Therefore, added noise:
– No gain    (Ns)2
– PSA     [1 + (1 - ) / (G)] (Ns)2
– PIA     [2(1 – 1/G) + 1/(G)] (Ns)2
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 FFT

IFFT

Add noise per spatial frequency:
(Ns) 2  When G = 1

 [1 + (1  )/(G)] (Ns) 2  For PSA

 [ 2(1 – 1/G) + 1/(G)] (Ns) 2  For PIA
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Simulation of Potential Advantage

Although shown here for a spatially broadband case, our 
goal in the MURI is to do proof-of-principle experiments with 
raster scanning of the image with use of a fiber-based PSA.
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Results: Averaged over 100 Frames

 = 0.8, G = 10 dB

Target (no average) PSA gainNo gain

One frame after 
IFFT (no average)

PIA gain
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Results: Averaged over 100 Frames

 = 0.3, G = 10 dB

Target (no average) PSA gainNo gain

One frame after 
IFFT (no average)

PIA gain
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Noise Figure Measurement 
of the Fiber PSA

NFave (Anti-Stokes) = (0.42 ± 0.53) dB NFave (Stokes) = (0.68 ± 0.59) dB

Lim, Grigoryan, Shin, & Kumar,  OFC’2008
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Proposed Proof-of-Principle Experiment 
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Experiment in Progress
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PSA Schematic
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PSA Laboratory
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PSA Attenuation Schematic
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PSA Attenuation Results

• Half-wave plate rotated to achieve 15 dB of attenuation in the 
signal and idler. 

• Pump stays at constant level due to variable optical attenuator.
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PSA Attenuation Results

• Gain stays relatively constant over the range of attenuation. 
• SNR ratio decreases with increased attenuation.
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PSA Imaging Schematic
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PSA Imaging Signal

• 10 dB Signal Gain
• 20 dB SNR
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One Dimensional Scan

• Three gray bars printed on 
transparency at 1200 dpi.

• 60%, 70%, 80% gray bars with 
transparent background.

• Transparency taped and 
sandwiched between two glass 
slides.

1 cm

6 mm
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One Dimensional Scan Results

PSA Output

Input
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PSA Imaging Decreased Signal

Signal Input

Signal Output

• Low light imaging of target.
• 6 dB Signal Gain
• 1 dB SNR
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Northwestern ‘N’ Raster Scan

• Northwestern ‘N’ printed on 
transparency at 1200 dpi.

• 70% gray scale background with 
60% gray scale letter.

• Transparency taped and sandwiched 
between two glass slides.

2.375 mm

3.5 mm
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Northwestern ‘N’ Imaging Results

PSA OutputInput2.375 mm

3.5 mm
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Future Applications

Dunn, Chem. Rev. 99 pp. 2891-2927

Genet & Ebbesen, Nature 445 pp. 39-45

Betzig & Trautman, Science 257 pp. 189-195

Near-Field Scanning Optical Microscopy (NSOM)



CPCCCPCC

Center for Photonic Communication and Computing McCormick School of Engineering and Applied ScienceQuantum Imaging Review, NU, 13 Nov 09 Slide # 26

Typical NSOM Setup

van Hulst, et al. J. Stuct. Biol. 119 pp. 222-231

www.nanonics.co.il

• Transmission
• Reflection
• Collection
• Illumination/Collection
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PSA Assisted NSOM
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NSOM Examples

Fluorescence imaging of DNA

van Hulst, et al. J. Stuct. Biol. 119 pp. 222-231
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NSOM Examples

Photonic crystal nanocavities

Okamoto, et al. Appl. Phys. Lett. 82 pp. 1676-1678


