

Year 3 Review / 17 November 2008 / UMBC, Baltimore, MD

Quantum Imaging Technologies: Quantum Laser Radar

Prem Kumar and Geraldo Barbosa

Center for Photonic Communication and Computing EECS Department, Northwestern University, Evanston, IL 60208-3118 E-mails: <u>kumarp@northwestern.edu</u>; <u>g-barbosa@northwestern.edu</u>

Jeffrey Shapiro Research Laboratory of Electronics, MIT, Cambridge, MA E-mail: jhs@mit.edu

Support: U. S. Army Research Office Multidisciplinary University Research Initiative Grant No W911NF-05-1-0197

Quantum Laser Radar

- Simulation of the amplification of a gray-scale image in the shot-noise limited regime
- Random zero-mean Gaussian noise is added to represent detector noise
 - A valid model when the received signal photon number per pulse or per inverse bandwidth is large
- Photocurrents in the unamplified and amplified cases are scaled appropriately for fair comparison.

Simulation of Preamplified Photodetection of Shot-Noise Limited Signals

- For G = 1 (no preamplification)
 - $SNR_{IN} = N_s$ (shot-noise limited signal)
 - $\langle (\Delta N_s)^2 \rangle_{\eta} = \eta N_s$, $SNR_{OUT} = \eta N_s$
 - NF = SNR_{IN} / SNR_{OUT} = $1/\eta$
- For G > 1
 - SNR $_{\text{IN}}$ = N $_{\text{s}}$ and $\langle (\Delta N_{\text{s}})^2 \rangle$ = N $_{\text{s}}$

- NF = SNR_{IN} / SNR_{OUT} = N_s / [(η GN_s)² / \langle (Δ N_s)² \rangle _{η G}]

$$- \langle (\Delta N_s)^2 \rangle_{\eta G} = NF (\eta G N_s)^2 / N_s = \langle (\Delta N_s)^2 \rangle_{\eta} \eta G^2 NF$$

• Noise Figure (NF): [PRL 83 (10), pp.1938-1941, Choi, Vasilyev & Kumar]

-
$$NF_{tot} = NF_{amp} + (1 - \eta) / (\eta G)$$

-
$$NF_{PSA} = 1 \rightarrow (NF^{PSA})_{tot} = 1 + (1 - \eta) / (\eta G)$$

- NF_{PIA} = 2 1/G \rightarrow (NF^{PIA})_{tot} = 2 (1 1/G) + 1 / (η G)
- Also, the detected signal in each case is different.
 So, we scale PSA & PIA noise by G² in order to fairly compare the photo-current between the three cases.
- Therefore, added noise:
 - No gain $\rightarrow \langle (\Delta N_s)^2 \rangle_{\eta}$
 - PSA \rightarrow η [1 + (1 η) / (η G)] $\langle (\Delta N_s)^2 \rangle_{\eta}$
 - PIA $\rightarrow \eta \left[2(1-1/G) + 1/(\eta G)\right] \langle (\Delta N_s)^2 \rangle_{\eta}$

Soft Gaussian

Frequency

Although shown here for a spatially broadband case, our goal in the MURI is to do proof-of-principle experiments with raster scanning of the image with use of a fiber-based PSA.

Results: Averaged over 100 Frames η = 0.8, G = 10 dB

Results: Averaged over 100 Frames η = 0.3, G = 10 dB

Our PSA Experimental Setup

Center for Photonic Communication and Computing

Quantum Imaging Review, UMBC, 11-17-08 Slide # 10

McCormick School of Engineering and Applied Science

Key Steps in the Measurement Scheme

- Employs phase locking loop with piezoelectric transducer for phase-sensitive amplification
- Double pass Highly Nonlinear Fiber
- Noise measurement on the analog signal

Direct Signal and Noise Measurements

Noise Figure Measurement of the Fiber PSA

Lim, Grigoryan, Shin, & Kumar, OFC'2008

 NF_{ave} (Anti-Stokes) = (0.42 ± 0.53) dB

 NF_{ave} (Stokes) = (0.68 ± 0.59) dB

Proposed Proof-of-Principle Experiment

Fig. 1 Cartoon illustrating the real situations where PSA finds useful applications.

