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Quantum Laser Radar
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Pictorial View of Amplification of Coherent 
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• Simulation of the amplification of a gray-scale image 

in the shot-noise limited regime

• Random zero-mean Gaussian noise is added to 

represent detector noise
– A valid model when the received signal photon number per 

pulse or per inverse bandwidth is large

• Photocurrents in the unamplified and amplified cases 

are scaled appropriately for fair comparison. 

Simulation of Preamplified Photodetection 
of Shot-Noise Limited Signals
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• For G  = 1 (no preamplification)
– SNRIN = Ns (shot-noise limited signal)

– 〈(ΔNs)2〉η = ηNs,  SNROUT = ηNs

– NF = SNRIN / SNROUT = 1/η

• For G > 1
– SNRIN = Ns and 〈(ΔNs)2〉 = Ns

– Output = ηGNs. Find 〈(ΔNs)2〉ηG from:

– NF = SNRIN / SNROUT = Ns / [(ηGNs)2 / 〈(ΔNs)2〉ηG]

…or…
– 〈(ΔNs)2〉ηG  = NF (ηGNs)2 / Ns =   〈(ΔNs)2〉η ηG2 NF

Simulation of Preamplified Photodetection 
of Shot-Noise Limited Signals
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Simulation of Preamplified Photodetection 

of Shot-Noise Limited Signals

• Noise Figure (NF): [PRL 83 (10), pp.1938-1941, Choi, Vasilyev & Kumar]

– NFtot = NFamp + (1 - η) / (ηG)
– NFPSA = 1   → (NFPSA)tot =  1 + (1 - η) / (ηG)
– NFPIA = 2 − 1/G   → (NFPIA)tot =  2 (1 – 1/G) + 1 / (ηG)

• Also, the detected signal in each case is different. 
So, we scale PSA & PIA noise by G2 in order to fairly 
compare the photo-current between the three cases.

• Therefore, added noise:
– No gain   → 〈(ΔNs)2〉η
– PSA   → η [1 + (1 - η) / (ηG)] 〈(ΔNs)2〉η
– PIA   → η [2(1 – 1/G) + 1/(ηG)] 〈(ΔNs)2〉η
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+ ×FFT

IFFT

Add noise per spatial frequency:
〈(ΔNs) 2〉η → When G = 1

η [1 + (1 − η)/(ηG)] 〈(ΔNs) 2〉η → For PSA

η [ 2(1 – 1/G) + 1/(ηG)] 〈(ΔNs) 2〉η → For PIA
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Simulation of Potential Advantage

Although shown here for a spatially broadband case, our 
goal in the MURI is to do proof-of-principle experiments with 
raster scanning of the image with use of a fiber-based PSA.
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Results: Averaged over 100 Frames

η = 0.8, G = 10 dB

Target (no average) PSA gainNo gain

One frame after 
IFFT (no average)

PIA gain
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Results: Averaged over 100 Frames

η = 0.3, G = 10 dB

Target (no average) PSA gainNo gain

One frame after 
IFFT (no average)

PIA gain
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Our PSA Experimental Setup
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pump

30GHz

signal idler

40MHz

Optical Signal preparation

• Employs phase locking loop with piezoelectric 
transducer for phase-sensitive amplification

• Double pass Highly Nonlinear Fiber
• Noise measurement on the analog signal

Key Steps in the 
Measurement Scheme



CPCCCPCC

Center for Photonic Communication and Computing McCormick School of Engineering and Applied ScienceQuantum Imaging Review, UMBC, 11-17-08 Slide # 12

Direct Signal and Noise 
Measurements
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Noise Figure Measurement 
of the Fiber PSA

NFave (Anti-Stokes) = (0.42 ± 0.53) dB NFave (Stokes) = (0.68 ± 0.59) dB

Lim, Grigoryan, Shin, & Kumar,  OFC’2008
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Proposed Proof-of-Principle Experiment 
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Experiment in Progress
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