MURI Kick-Off Meeting

Rochester, June 9-10, 2005

Quantum Imaging

- Entangled state and thermal light
- Foundamental and applications

Optical Projection (Chinese shadow, X-ray, ...)

Momentum $\left(\mathrm{p}_{1}\right) \Longrightarrow$ Momentum $\left(\mathrm{p}_{2}\right)$
No image plane is defined.

Optical Imaging:

$\begin{array}{clc}\text { Point (object Plane) } & \Longrightarrow & \text { Point (image plane) } \\ \text { Position }\left(x_{1}\right) & \Longrightarrow & \text { Position }\left(x_{2}\right)\end{array}$

$$
\frac{1}{S_{0}}+\frac{1}{S_{i}}=\frac{1}{f} \quad \text { and } \Delta\left(x_{1}-x_{2}\right)=0 \quad\left\{\begin{array}{l}
\text { Geometric optics } \\
\text { Image lens: } \rightarrow \infty
\end{array}\right\}
$$

Spatial Resolution

Point (object plane) \Longrightarrow Spot (image plane) δ-function \Longrightarrow somb-function

$$
\Delta\left(x_{1}-x_{2}\right) \Rightarrow \operatorname{com} l(\xi)=\frac{2 J_{1}(\pi \xi)}{\pi \xi}
$$

Two-Photon Imaging

"Ghost" Imaging with entangled photon pairs

$$
\begin{array}{llll}
\Delta \vec{x}_{1}=\infty & \Delta \vec{x}_{2}=\infty & \Leftrightarrow & \vec{x}_{1}-\vec{x}_{2}=0 \\
\Delta \vec{k}_{1}=\infty & \Delta \vec{k}_{2}=\infty & \Leftrightarrow & \vec{k}_{1}+\vec{k}_{2}=0
\end{array}
$$

Point x_{1} (object plane) $\Leftrightarrow \quad$ Point x_{2} (image plane)

$$
\frac{1}{S_{0}}+\frac{1}{S_{i}}=\frac{1}{f}
$$

I

$$
\frac{1}{S_{0}}+\frac{1}{S_{i}}=\frac{1}{f}
$$

"Ghost" Image and "Ghost" Interference EPR Experiment in momentum-position

PRL, 74, 3600 (1995); PRA, 52, R3429 (1995).

Classical: never!

- classical statistical measurements

$$
\begin{aligned}
& \Delta\left(x_{1}-x_{2}\right)=\sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}}>\operatorname{Max}\left(\Delta x_{1}, \Delta x_{2}\right) \\
& \Delta\left(p_{1}+p_{2}\right)=\sqrt{\left(\Delta p_{1}\right)^{2}+\left(\Delta p_{2}\right)^{2}}>\operatorname{Max}\left(\Delta p_{1}, \Delta p_{2}\right)
\end{aligned}
$$

* $\quad H=H_{1}+H_{2} ; \quad H_{\text {interaction }}=0$
* Space-like separated measurement events.
(1) No interaction between two distant quanta;
(2) No action-at-a-distance between individual measurements.

To EPR: the two quanta are independent as well as the measurements, so that

$$
\begin{aligned}
& \Delta\left(x_{1}-x_{2}\right)=\sqrt{\left(\Delta x_{1}\right)^{2}+\left(\Delta x_{2}\right)^{2}}>\operatorname{Max}\left(\Delta x_{1}, \Delta x_{2}\right) \\
& \Delta\left(p_{1}+p_{2}\right)=\sqrt{\left(\Delta p_{1}\right)^{2}+\left(\Delta p_{2}\right)^{2}}>\operatorname{Max}\left(\Delta p_{1}, \Delta p_{2}\right)
\end{aligned}
$$

Classically correlated systems: one may consider building an ensemble of particle-pairs to force each pair with $p_{1}+p_{2}=p_{0}$ and $\Delta p_{1}=0, \Delta p_{2}=0$, so that $\Delta\left(p_{1}+p_{2}\right)=0$. In this case, however, $\Delta\left(x_{1}-x_{2}\right) \sim \infty$

Quantum: yes!

- EPR: if the two quanta are entangled

$$
\begin{aligned}
& \Delta\left(x_{1}-x_{2}\right)=0 \\
& \Delta\left(p_{1}+p_{2}\right)=0
\end{aligned}
$$

Although $\left\{\begin{array}{ll}\Delta x_{1}=\infty, & \Delta x_{2}=\infty \\ \Delta p_{1}=\infty, & \Delta p_{2}=\infty\end{array}\right\}$

Can quantum mechanical physical reality be considered complete?

Einstein, Poldosky, Rosen, Phys. Rev. 47, 777 (1935).
(1) Proposed the entangled two-particle state according to the principle of quantum superposition:

$$
\begin{gathered}
\Psi\left(x_{1}, x_{2}\right)=\int d p \psi_{p}\left(x_{2}\right) u_{p}\left(x_{1}\right) \Rightarrow \delta\left(x_{1}-x_{2}+x_{0}\right) \\
\bar{\Psi}\left(p_{1}, p_{2}\right)=\int d x \varphi_{x}\left(x_{2}\right) v_{x}\left(x_{1}\right) \Rightarrow \delta\left(p_{1}+p_{2}\right)
\end{gathered}
$$

(2) Pointed out an surprising phenomenon: the momentum (position) for neither subsystem is determinate; however, if one particle is measured to have a certain momentum (position), the momentum (position) of its "twin" is determined with certainty, despite the distance between them!

The apparent contradiction deeply troubled Einstein.
While one sees the measurement on $\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$ and ($\mathrm{x}_{1}-\mathrm{x}_{2}$) of two individual particles satisfy the EPR δ-function and believes the classical inequality, one might easily be trapped into considering either there is a violation of the uncertainty principle or there exists action-at-a-distance.

Violation of the uncertainty principle?

$$
\Delta\left(p_{1}+p_{2}\right)=0 \quad \Delta\left(x_{1}-x_{2}\right)=0
$$

Simultaneously!

$\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right)$ and $\left(\mathrm{x}_{1}-\mathrm{x}_{2}\right)$ are not
conjugate variables !!!!

$$
\begin{aligned}
\Psi\left(x_{1}, x_{2}\right)= & \frac{1}{2 \pi \hbar} \int d p_{1} d p_{2} \delta\left(p_{1}+p_{2}\right) e^{i p_{1} x_{1} / \hbar} e^{i p_{2}\left(x_{2}-x_{0}\right) / \hbar} \\
= & \frac{1}{2 \pi \hbar} \int d\left(p_{1}+p_{2}\right) \delta\left(p_{1}+p_{2}\right) e^{i\left(p_{1}+p_{2}\right)\left(x_{1}+x_{2}^{\prime}\right) / 2 \hbar} \\
& \times \int d\left(p_{1}-p_{2}\right) / 2 e^{i\left(p_{1}-p_{2}\right)\left(x_{1}-x_{2}^{\prime}\right) / 2 \hbar} \\
= & \times \delta\left(x_{1}-x_{2}+x_{0}\right)
\end{aligned}
$$

$$
\begin{aligned}
\bar{\Psi}\left(p_{1}, p_{2}\right)= & \frac{1}{2 \pi \hbar} \int d x_{1} d x_{2} \delta\left(x_{1}-x_{2}+x_{0}\right) e^{-i p_{1} x_{1} / \hbar} e^{-i p_{2}\left(x_{2}-x_{0}\right) / \hbar} \\
= & \frac{1}{2 \pi \hbar} \int d\left(x_{1}+x_{2}^{\prime}\right) e^{-i\left(p_{1}+p_{2}\right)\left(x_{1}+x_{2}^{\prime}\right) / 2 \hbar} \\
& \times \int d\left(x_{1}-x_{2}^{\prime}\right) / 2 \delta\left(x_{1}-x_{2}^{\prime}\right) e^{-i\left(p_{1}-p_{2}\right)\left(x_{1}-x_{2}^{\prime}\right) / 2 \hbar} \\
= & \delta\left(p_{1}+p_{2}\right) \times 1
\end{aligned}
$$

Conjugate Variables:

$$
\begin{aligned}
\left(x_{1}+x_{2}\right) & \Leftrightarrow\left(p_{1}+p_{2}\right) \\
\left(x_{1}-x_{2}\right) & \Leftrightarrow\left(p_{1}-p_{2}\right) \\
& \Downarrow \\
\Delta\left(x_{1}+x_{2}\right)=\infty & \Leftrightarrow \Delta\left(p_{1}+p_{2}\right)=0 \\
\Delta\left(x_{1}-x_{2}\right)=0 & \Leftrightarrow \Delta\left(p_{1}-p_{2}\right)=\infty
\end{aligned}
$$

EPR δ-function:

-- perfect entangled system

$$
\Delta\left(x_{1}-x_{2}\right)=0, \quad \Delta\left(p_{1}+p_{2}\right)=0 .
$$

Although: $\Delta x_{1} \approx \infty, \Delta x_{2} \approx \infty, \Delta p_{1} \approx \infty, \Delta p_{2} \approx \infty$.

EPR Inequality:

-- non-perfect entangled system

$$
\begin{aligned}
& \Delta\left(x_{1}-x_{2}\right)<\min \left(\Delta x_{1}, \Delta x_{2}\right) \\
& \Delta\left(p_{1}+p_{2}\right)<\min \left(\Delta p_{1}, \Delta p_{2}\right)
\end{aligned}
$$

Then, why Einstein ...?

Observation:

$$
\Delta\left(x_{1}-x_{2}\right)=0, \quad \Delta\left(p_{1}+p_{2}\right)=0
$$

Believing:

$$
\begin{aligned}
& \Delta\left(x_{1}-x_{2}\right)>\operatorname{Max}\left(\Delta x_{1}, \Delta x_{2}\right) \\
& \Delta\left(p_{1}+p_{2}\right)>\operatorname{Max}\left(\Delta p_{1}, \Delta p_{2}\right)
\end{aligned}
$$

Conclusion:

$$
\begin{array}{ll}
\Delta x_{1}=0, & \Delta p_{1}=0 \\
\Delta x_{2}=0, & \Delta p_{2}=0
\end{array}
$$

(Violation of the ...)

The interpretation ?

\downarrow

Quantum entanglement

Two-photon is not two photons !

$$
2 \neq 1+1
$$

Classical:
Two Wavepackets
A non-factorable
2-D Wavepacket

Biphoton State: Spontaneous Parametric Down Conversion

Two-photon Pure State

The signal (idler) photon can have any energy (momentum), however, if one of the photons is measured at certain energy (momentum) its twin must be at a certain energy (momentum).

$$
|\Psi\rangle=\sum_{s, i} \delta\left(\omega_{s}+\omega_{i}-\omega_{p}\right) \delta\left(\mathbf{k}_{s}+\mathbf{k}_{i}-\mathbf{k}_{p}\right) \hat{a}_{s}^{+} \hat{a}_{i}^{+}|0\rangle
$$

Operational approach:

$$
G^{(2)}\left(x_{1}, x_{2}\right)=\left\langle E_{1}^{(-)} E_{2}^{(-)} E_{2}^{(+)} E_{1}^{(+)}\right\rangle
$$

Pure state:

$$
\begin{aligned}
& G^{(2)}\left(x_{1}, x_{2}\right) \\
= & \langle\Psi| E_{1}^{(-)}\left(x_{1}\right) E_{2}^{(-)}\left(x_{2}\right) E_{2}^{(+)}\left(x_{2}\right) E_{1}^{(+)}\left(x_{1}\right)|\Psi\rangle \\
= & \left.\left|\langle 0| E_{2}^{(+)}\left(x_{2}\right) E_{1}^{(+)}\left(x_{1}\right)\right| \Psi\right\rangle\left.\right|^{2}
\end{aligned}
$$

$\Psi\left(t_{1}, t_{2}\right) \equiv\langle 0| E_{2}^{(+)}\left(t_{2}\right) E_{1}^{(+)}\left(x_{1}\right)|\Psi\rangle$

SPDC A biphoton

Effective Two-photon wavefunction

$$
\Psi\left(t_{1}, t_{2}\right)=F_{t_{1}+t_{2}}\left\{f\left(\omega_{p}-\omega_{p 0}\right)\right\} F_{t_{1}-t_{2}}\left\{g\left(\omega_{s}-\omega_{s 0}\right)\right\} e^{-i \omega_{s 0} t_{1}} e^{-i \omega_{i 0} t_{2}}
$$

Two-photon imaging

Field Operators:

$$
E_{j}^{(+)}\left(\mathbf{r}_{j}, t_{j}\right)=\int d \mathbf{k}^{T} \int d \omega a\left(\omega, \mathbf{k}^{T}\right) e^{-i \omega t_{j}} g_{j}\left(\omega, \mathbf{k}^{T} ; z_{j}, \vec{\rho}_{j}\right)
$$

$g_{j}\left(\omega, \mathbf{k}^{T} ; z_{j}, \vec{\rho}_{j}\right)$: Green's function (optical transfer function). determined by the experimental setup.

$$
\begin{gathered}
\Downarrow \\
G^{(2)}=\left|\Psi\left(\bar{\rho}_{1}, \vec{\rho}_{2}\right)\right|^{2}
\end{gathered}
$$

The calculation of $G^{(2)}$ is lengthy but straightforward:

$$
\Delta\left(\vec{\rho}_{1}-\vec{\rho}_{2}\right)_{E P R} \sim 0
$$

It is the two-photon coherent superposition made it possible!

Although questions regarding fundamental

 issues of quantum theory still exist, quantum entanglement has indeed brought up a novel concept or technology in nonlocal positioning and timing measurements with high accuracy, even beyond the classical limit.
Question:

Can "ghost" image be simulated classically ?

\Uparrow

Image but not projection!!!

Yes
 Experimentally

Thermal Light Imaging

Magic Mirror and Ghost Imaging

Experimental Result: Ghost image of a double-slit.
A. Valencia, G. Scarcelli, M. D'Angelo, and Y.H. Shih, Phys. Rev. Lett. 94, 063601 (2005).

Measurement on the image plan.

Two-photon thermal light Imaging:

Incoherent imaging: $\quad G^{(2)}=\sum_{k} G_{k}^{(2)}=\sum_{k}\left[G_{11}^{(1)} G_{22}^{(1)}+G_{12}^{(1)} G_{21}^{(1)}\right]$

Magic Mirror ?

Measurement on the mirror plan.

It is useful !

A "Ghost" Camera in Space (Nonlocal)

A "Magic Mirror" for X-ray 3-D Imaging

It is fundamentally interesting !!

50\% momentum-momentum, position-position EPR correlation

Where it comes from ?

Remember: thermal light is chaotic !

It comes from Hanbeury Brown - Twiss ... ???
It comes from "photon bunching" ... ???
We are not satisfied !

The physics behind ???

Correlated
 Lasers

$$
G^{(2)}=G^{(2)}\left(x_{1}\right) \times G^{(2)}\left(x_{2}\right)
$$

A product of two independent first-order-pattern.

X_{1}, X_{2}

SPDC

$$
|\Psi\rangle=\left[a_{s}^{+} a_{i}^{+}+b_{s}^{+} b_{i}^{+} e^{i \phi}\right]|0\rangle ; \quad \phi=\text { const } .
$$

$G^{(2)} \propto \operatorname{sinc}^{2}\left[\frac{\pi a f}{\lambda}\left(x_{1}+x_{2}\right)\right] \cos ^{2}\left[\frac{\pi b f}{\lambda}\left(x_{1}+x_{2}\right)\right]=\operatorname{sinc}^{2}\left(\frac{\pi a f}{\lambda / 2} x\right) \cos ^{2} \frac{\pi b f}{\lambda / 2} x$

Thermal

$$
\begin{aligned}
& |\alpha\rangle=a_{k}^{+} a_{k^{\prime}}^{+}|0\rangle ; \quad|\beta\rangle=b_{k}^{+} b_{k^{\prime}}^{+}|0\rangle ; \quad|\gamma\rangle=\frac{1}{\sqrt{2}}\left(a_{k}^{+} b_{k^{\prime}}^{+}+b_{k}^{+} a_{k^{\prime}}^{+}\right)|0\rangle \\
& \hat{\rho}=|\alpha|^{2}|\alpha\rangle\langle\alpha|+|\beta|^{2}|\beta\rangle\langle\beta|+|\gamma|^{2}|\gamma\rangle\langle\gamma|
\end{aligned}
$$

$$
G^{(2)} \propto 1+\operatorname{sinc}^{2}\left[\frac{\pi a f}{\lambda}\left(x_{1}-x_{2}\right)\right] \cos ^{2}\left[\frac{\pi b f}{\lambda}\left(x_{1}-x_{2}\right)\right]
$$

Quantum lithography

(ultra-resolution: beyond classical limit)

Optical Lithography

Optical Lithography

Optical Lithography

Optical Lithography

Two-photon diffraction and quantum lithography

Experiment: M. D’Angelo, et al, PRL, 87, 013602 (2001).
Theory: A.N. Boto, et al. PRL 85, 2733 (2000).

Experimental Data

SPDC two-photon at $\lambda_{s}=\lambda_{i}=916 \mathrm{~nm}$

$$
\mathrm{R}_{\mathrm{c}}(\theta)=\operatorname{sinc}^{2}[(2 \pi \mathrm{a} / \lambda) \theta] \times \cos ^{2}[(2 \pi b / \lambda) \theta]
$$

Classical laser light at $\lambda=916 \mathrm{~nm}$

It is the result of two-photon coherent superposition. It measures the second-order correlation between the object plane and the image plane, defined by the Gaussian thin lens equation.

The published measurement was on the Fourier transform plane (far-field). PRL, 87, 013602 (2001).

Super-resolution:

Classical diffraction

Diffraction of a pair

Double (super)
Spatial Resolution on the Image Plane

"Ghost" Shadow (Projection)

$$
\hat{\rho}_{c l}=\int d \mathbf{k}_{1} \int d \mathbf{k}_{2} P\left(\mathbf{k}_{1}\right) \delta\left(\mathbf{k}_{1}+\mathbf{k}_{2}\right) \rho_{1}^{\left(\mathbf{k}_{1}\right)} \otimes \rho_{2}^{\left(\mathbf{k}_{2}\right)}
$$

Bennink et al. PRL 89, 113601 (2002)

