Quantum Optical Coherence Tomography

Bahaa Saleh Alexander Sergienko Malvin Teich

http://www.bu.edu/qil/

Outline

- 1. High-resolution QOCT
- 2. Engineered sources of broadband entanglement
 - a) non-collinear SPDC
 - b) periodically-polled chirped nonlinear structures
- 3. Broadband single-photon detectors

Spectral control using spatial modulation

BOST

UNIVERSIT

S. Carrasco, A. V. Sergienko, B. E. A. Saleh, M. Teich, J. P. Torres and L. Torner "Spectral engineering of entangled two-photon states", *Physical Review A*, v. 73, 063802 (2006).

Experimental results: Spectral Width Control

QOCT with QPM Crystal

Non-collinear SPDC + Spatial pump shape

After Carrasco et al., Opt. Lett. 29, 2429-2431 (2004)

INTEGRATED COMPACT PPLN ENTAGLED-PHOTONS SOURCE

◆ In-house manufacturing of periodically-poled nonlinear crystals (PPLN) for miniaturization of entangled-photon sources. Design of compact sources of sophisticated entanglement at telecommunication wavelength. Further miniaturization and integration.

Lithium niobate : - strong second order non-linearity, d_{33} = -27 pm/V (BBO : d_{eff} = 2.4 pm/V) - transparent on a wide frequency range (350 nm to 5µm)

- quasi-phase matching by modulating $\chi^{(2)}(z) = \chi^{(2)} e^{iKz}$

- highest non-linear coefficient

In-House Fabrication of PPLN

H. Guillet de Chatellus, G. Di Giuseppe, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, "Non-collinear and Non-degenerate Polarization-Entangled Photon Generation via Concurrent Type-I Parametric Downconversion in PPLN", *Optics Express*, v. 14, 10060-10072 (2006).

Spectral widening

Silvia Carrasco, Juan P. Torres, and Lluis Torner, Alexander Sergienko, Bahaa E. A. Saleh, and Malvin C. Teich, *Optics Letters*, **v. 29**, 2429-2431 (2004).

Spectral entanglement in SPDC and coincidence detection

Superconducting Single-Photon Detector (SSPD)Technology

Z2509a

Superconducting Single-Photon Detector (SSPD)Technology

SSPD detector structure

	Statistics and a statistical	
		1-1-1
(manager		
The second		
0		
	A	jur (jur

- SSPD is usually 3-10 nm thick Niobium Nitride (NbN) meandering microstripe sputtered on Sapphire substrate
- E-beam lithography is used to define the device structure
- Detector area is 10 x 10 μ m
- Fill factor is ~ 50%
- Operating temperature < 4 °K
- Photons are detected from VIS to IR

G.N. Gol'tsman et al. Fabrication of Nanostructured Superconducting Single-Photon Detectors IEEE Transactions on Applied Superconductivity VOL. 13, NO. 2, JUNE 2003

Superconducting Photon-Counting Detectors: NbN SSPD

3.5-nm-thick devices with 0.5 filling factor. Meander-type structures with the active area 10 x 10 mm.²

SSPD Hardware

SSPD Hardware

SM Optical Fiber Alignment to SSPD

Gold Contact NbN nanowire

SSPD viewed under Microscope 100 X Magnification

SSPD Meander and Gold contacts as seen with CCD Camera (100 X) Maginfication

New SSPD

(Phillips 6954-S-100 amplifier is connected very close to bias-T output Phillips 6954 Supply Voltage = 20.0V; SSPD Bias Current = 21 uA)

SSPD #1, Counting at 80 MHz rep rate

(800 – 820 nm Picoquant laser coupled into 780 nm SM fiber illuminates the SSPD)

What's next

- 1. Correlation (coincidence) measurement of quantum interference with broadband integrated sources of entangled photons (PPLN) and broadband superconducting photon-counting detectors (SSPD) for highresolution QOCT.
- 2. Initial laboratory tests with biological samples.