Quantum Imaging: New Methods and Applications

Robert W. Boyd

The Institute of Optics and Department of Physics and Astronomy University of Rochester, Rochester, NY 14627 http://www.optics.rochester.edu

Presented at the Quantum Imaging MURI Review, Fort Belvoir, Virginia, October 23-24, 2006.

Quantum Lithography

Robert Boyd, Sean Bentley^{*}, Hye-Jeong Chang, Heedeuk Shin, Malcolm O'Sullivan-Hale and Kam Wai Chan

> Institute of Optics, University of Rochester, Rochester, NY *Department of Physics, Adelphi University, Garden City, NY

> > **Girish Agarwal**

Department of Physics, Oklahoma State University, Stillwater, OK

Hugo Cable, Jonathan Dowling

Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA

Presented at SPIE, August 14th, 2006

Demonstration of Sub-Rayleigh Lithography Using a Multi-Photon Absorber

Heedeuk Shin, Hye Jeong Chang*, Malcolm N. O'Sullivan-Hale, Sean Bentley[#], and Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, NY 14627, USA * The Korean Intellectual Property Office, DaeJeon 302-791, Korea [#] Department of Physics, Adelphi University, Garden City, NY

Presented at OSA annual meeting, October 11th, 2006

Original Quantum Lithography Proposal

- Entangled photons produced in SPDC can increase resolution of an interferometric lithography system by factor of 2 (Boto et al., 2000)
- *N*-fold enhancement possible when *N* photons are entangled

Boto et al., PRL **85**, 2733 (2000)

Experimental Challenges

- What quantum state of light to use?
 - Need <u>strong</u> enough light to excite two-photon absorption
 - Need <u>weak</u> enough light so that the statistics are those of individual photon pairs
- Develop a multi-photon absorber
 - Nth harmonic generation/coincidence circuitry
 - Polymethylmethacrylate (PMMA)
 - Multi-photon absorber at visible wavelengths
 - e-beam resist

Quantum Lithography with an OPA

- Replace parametric down-converter with high gain optical parametric amplifier (OPA)
 - Can be very intense
 - Possesses strong quantum features

Agarwal, Boyd, Nagasko, Bentley, PRL 86, 1389 (2001)

Experimental Setup

Experiment to realize NOON (N=2) state for quantum lithography

Problem: Scattering from pump laser saturates detection with APDs \rightarrow Need to shield beam path.

The Institute of Optics

Two-Photon Excitation Rate

For light from an OPA, both linear and quadratic dependence are present.

Cross-over point:

 $I = \frac{1}{3}$ photons/mode G = 0.55

For cases of practical interest, the rate scales quadratically with *I*.

Accepted for publication in JOSA B

Visibility using an OPA and TPA

Effect of an N-Photon Absorber

(But still for a two-photon entangled state)

• As *N* increases the visibility improves, but there is no improvement in resolution.

Accepted for publication in JOSA B

Summary of OPA Results

For most cases, two-photon excitation rate scales as *I*².

- OPA + TPA produces fringes with visibility greater than 20%
- OPA + N-photon absorber produces fringes with even greater visibility (but with no greater resolution)

Classically Simulated Quantum Lithography

Proof-of-Principle Experiment

Bentley and Boyd, Opt. Exp. 12, 5735 (2004)

One-photon detector

Two-photon detector and one laser pulse

Two-photon detector and two pulses with phase shift

• Use classically simulated quantum lithography to develop an *N*-photon recording material

PMMA

•Polymethylmethacrylate (PMMA) is a positive photo-resist that is transparent in the visible region.

•3PA @ 800 nm can break chemical bonds, and the affected regions can be removed in the development process.

University of Rochester

PMMA Preparation

- Sample
 - PMMA (120,000 MW) + Toluene Solution (20% solids by weight)
 - PMMA is spin-coated on a glass substrate
 - spin-coated @ 1000 rpm, 20 sec
 - dried for 3 min
 - repeated 3 times
 - \rightarrow 1- μ m-thick film
- Development
 - Developer: 10 sec in 1:1 methyl isobutyl ketone (MIBK) to isopropyl alcohol
 - Rinse: 10 sec in DI water
 - Air blow dried

Experimental Setup

WP: half-wave plate; Pol.: polarizer; M1,M2,M3: mirrors; BS: beamsplitter; f1,f2: lenses; PR: phase retarder (Babinet-Soleil compensator)

Fringes on PMMA

Recording wavelength: Pulse energy: Pulse duration: Recording Angle θ:

Period: 425 nm

800 nm 130 μJ/beam 120 fs 70°

Surface Cross-Section

AFM images of PMMA surface

Sub-Rayleigh Fringes on PMMA

AFM image of PMMA surface

Two pulses with π phase-shift

Recording wavelength:
Pulse energy:
Pulse duration:
Recording Angle θ :

800 nm 90 μJ/beam 120 fs 70°

Period: 213 nm

Further Enhancement?

- PMMA is a 3PA @ 800 nm, so further enhancement should be possible.
- Illuminate with two pulses with a $2\pi/3$ phase-shift.

1/6 the recording wavelength!

Importance of PMMA Result

- Demonstrates sub-Rayleigh resolution on a real material using the phase-shifted grating method.
- Shows that PMMA is an *N*-photon absorber with adequate resolution for use in true quantum lithography.
- But we are looking into other materials that can provide greater sensitivity.

Non-sinusoidal Patterns

- In principle, Fourier's Theorem can be applied to generate arbitrary patterns.
 - Can only remove material
 - Visibility???
- Alternatively, we can generalize method...

$$E_{N,M} = \sum_{k=1}^{M} I_k^N \quad \text{where} \quad I = \left| 1 + A_k e^{i\chi} e^{i2\pi k/M} \right|^2$$

New term: Allow different amplitudes on each shot

Non-Sinusoidal Patterns - Theory

 Different field amplitudes on each shot can generate more general non-sinusoidal patterns.

$$I = \sum_{m=1}^{M} A_m [1 + \cos(Kx + \Delta_m)]^N$$

For example, if N = 3, M = 3

$$A_1 = 1$$
 $\Delta_1 = 0$ $A_2 = 0.75$ $\Delta_2 = \pi/2$ $A_3 = 0.4$ $\Delta_3 = \pi$

Two-Dimensional Patterns - Theory

 Method can be extended into two dimensions using four recording beams.

Pattern = thickness –
$$\sum_{mx,my=1}^{M} A_{mx} [1 + \cos(Kx + \Delta_{mx})]^{N} A_{my} [1 + \cos(Ky + \Delta_{my})]^{N}$$

For example,
N=8, M=14

With S. Bentley, Adelphi University

- PMMA is a suitable multi-photon absorbing material for use in quantum lithography
- Demonstrated sub-Rayleigh ($\lambda/4$) resolution using NL lithography

Ongoing research

- Construct an intense light source based on high-gain optical parametric amplification
- Demonstrate quantum lithography

Entanglement Propagation in Photon Pairs created by SPDC

Malcolm O'Sullivan-Hale, Kam Wai Chan, and Robert W. Boyd

Institute of Optics, University of Rochester, Rochester, NY

Presented at OSA Annual Meeting, October 10th, 2006

Entangled position and momentum spaces in SPDC involve high dimensional Hilbert spaces.

Questions:

- Effects of free-space propagation on the spatial correlations between photons?
- Implications about the entanglement present in the system?
- How rapidly do these correlations degrade as a consequence of loss or propagation through turbulence?

Spontaneous Parametric Down-Conversion

$$\mathbf{k}_{\mathrm{p}}^{(\mathrm{e})} = \mathbf{k}_{\mathrm{s}}^{(\mathrm{o})} + \mathbf{k}_{\mathrm{i}}^{(\mathrm{e})}$$

Propagation of Correlations

Question: What is going on in the intermediate zone? Is entanglement "lost"?

Experimental Set-up

The Institute of Optics

Near-field Correlations

 $(\underbrace{\mathsf{u}}_{i} \underbrace$

Normalized Coincidence Rates

- Slits/knife edge placed in the imaged plane of the crystal.
- Strongly correlated photon positions.

•

Far-field Correlations

Normalized Coincidence Rates

- Slits/knife edge placed in the focal plane of the lens.
- Strongly anti-correlated photon positions.
- R_x = 28.52

The Intermediate Zone?

- Slits moved behind image plane (12 cm behind image plane or 14.5 cm after crystal).
- Little residual spatial correlations.

Migration of Entanglement to Phase

 At a particular propagation distance z₀ the amplitudesquared wave function will become separable, although the wave function itself is entangled, i.e.

$$|\psi(x_s, x_i)|^2 = f(x_s)g(x_i)$$

$$\psi(x_s, x_i) = \sqrt{f(x_s)g(x_i)}e^{i\phi(x_s, x_i)}$$

• The entanglement has migrated to phase. We need interferometric methods to get information about the entanglement.

$$|\psi(x_s, x_i) + \psi(x_s, -x_i)|^2$$

Experiment to Detect Phase Entanglement

Conclusions

- We have experimentally investigated the propagation of spatial correlations in SPDC.
- The apparent disappearance of entanglement can be explained by the migration of entanglement from intensity to the phase of the wave function.
- Rotational shearing interferometers should enable us to recover the entanglement information in the intermediate zones.

Quantum Imaging: New Methods and Applications Quantum Lithography and Large Entanglement

Objectives

- Develop sub-Rayleigh photo-lithography
- Develop related imaging modalities
- Exploit entanglement in large Hilbert spaces for imaging applications
- Develop means of minimizing the loss of quantum coherence due to propagation

Approach

- Develop sensitive multiphoton lithographic materials
- Make use of high-gain OPA as source of light for quantum lithography
- Exploit continuous-variable entanglement to produce high-dimensional entanglement
- Develop imaging protocols based on highdimensional entanglement

R W Boyd, University of Rochester

Accomplishments

- Established PMMA as a suitable lithographic material
- Demonstrated ability to write λ /6 features
- Developed protocol for writing non-sinusoidal features
- Performed study of properties of OPA as a source for quantum lithography
- Performed measurements of modification of entanglement upon propagation

Acknowledgements

Supported by - the US Army Research Office through a MURI grant

OSA: Oct. 10 th, 2006