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Original Quantum Lithography Proposal

• Entangled photons produced in SPDC can increase
resolution of an interferometric lithography system
by factor of 2 (Boto et al., 2000)

• N-fold enhancement possible when N photons are
entangled

|2, 0i+ |0, 2i|1, 1i
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Experimental Challenges

• What quantum state of light to use?
– Need strong enough light to excite two-photon 

absorption
– Need weak enough light so that the statistics are those 

of individual photon pairs

• Develop a multi-photon absorber
– Nth harmonic generation/coincidence

circuitry
– Polymethylmethacrylate (PMMA)

• Multi-photon absorber at visible 
wavelengths

• e-beam resist
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Quantum Lithography with an OPA

• Replace parametric down-converter 
with high gain optical parametric 
amplifier (OPA)
– Can be very intense

– Possesses strong quantum features

Agarwal, Boyd, Nagasko, Bentley, PRL 86, 1389 (2001)



Experimental Setup
Experiment to realize NOON (N=2) state for quantum lithography

Hong-Ou-Mandel 
Interferometer

We expect to see a HOM 
dip with unit visibility at low 
gains.  As we increase 
gain, visibility decreases 
but does not vanish.

Problem: Scattering from pump laser saturates 
detection with APDs → Need to shield beam path.



Two-Photon Excitation Rate

• For light from an OPA, 
both linear and quadratic 
dependence are present.

• Cross-over point:

= 1
3 photons/mode

G = 0 .55

For cases of practical interest, 
the rate scales quadratically
with I.

I

Accepted for publication in JOSA B



Visibility using an OPA and TPA

Visibility versus Gain
V = cosh2G

cosh2G+4 sinh2G

V =
R(2)max−R(2)min

R
(2)
max+R

(2)
min

Visibility never falls
below 20%
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Effect of an N-Photon Absorber

• As N increases the visibility improves, but there is 
no improvement in resolution.

(But still for a two-photon entangled state)

Accepted for publication in JOSA B



Summary of OPA Results

• For most cases, two-photon excitation rate 
scales as I2.

• OPA + TPA produces fringes with visibility 
greater than 20%

• OPA + N-photon absorber produces fringes 
with even greater visibility (but with no 
greater resolution)
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Classically Simulated Quantum Lithography

Proof-of-Principle Experiment

One-photon
detector

Bentley and Boyd, Opt. Exp. 12, 5735 (2004)

Two-photon
detector and
one laser pulse

Two-photon
detector and
two pulses with
phase shift

•   Use classically simulated quantum lithography to develop 
   an N-photon recording material



PMMA

•Polymethylmethacrylate (PMMA) is a positive photo-resist that is 
transparent in the visible region.

•3PA @ 800 nm can break chemical bonds, and the affected regions 
can be removed in the development process.

SPIE: Aug. 14th, 2006

UV absorption spectrum of PMMA

PMMA is 3-photon 
absorber @ 800 nm.

Problem: Self-healing 
means multiple bonds 
must be broken.800 nm



PMMA Preparation

• Sample
– PMMA (120,000 MW) + Toluene Solution (20% solids by weight)
– PMMA is spin-coated on a glass substrate

• spin-coated @ 1000 rpm, 20 sec
• dried for 3 min
• repeated 3 times

→ 1-µm-thick film

• Development
– Developer: 10 sec in 1:1 methyl isobutyl ketone (MIBK) to isopropyl 

alcohol 
– Rinse:  10 sec in DI water
– Air blow dried
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Experimental Setup

Ti:sapphire fs-laser

f1
M1

f2
M2

PMMA

BS

M3Pol.WP

PR

with regenerative amplifcation
120 fs, 1 W, 1 kHz, at 800 nm 
(Spectra-Physics)

SPIE: Aug. 14th, 2006

WP: half-wave plate; Pol.: polarizer; M1,M2,M3: mirrors; BS: beamsplitter; f1,f2: 
lenses; PR: phase retarder (Babinet-Soleil compensator)



Fringes on PMMA
θ

Recording wavelength: 800 nm
Pulse energy: 130 µJ/beam
Pulse duration: 120 fs
Recording Angle θ: 70o

Period: 425 nm AFM images of PMMA surface

Surface Cross-Section
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Sub-Rayleigh Fringes on PMMA

Two pulses with π phase-shift
Recording wavelength: 800 nm
Pulse energy: 90 µJ/beam
Pulse duration: 120 fs
Recording Angle θ: 70o

Period: 213 nm

AFM image of PMMA surface
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Further Enhancement?

PMMA is a 3PA @ 800 nm, so 
further enhancement should be 
possible.

• Illuminate with two pulses with a 
2π/3 phase-shift.

SPIE: Aug. 14th, 2006

141 nm

1/6 the recording 
wavelength!



Importance of PMMA Result

• Demonstrates sub-Rayleigh resolution on a 
  real material using the phase-shifted grating 
  method.

• Shows that PMMA is an N-photon absorber 
  with adequate resolution for use in true 
  quantum lithography.

• But we are looking into other materials that
can provide greater sensitivity.



Non-sinusoidal Patterns

• In principle, Fourier’s Theorem can be applied to 
generate arbitrary patterns.
– Can only remove material
– Visibility???

• Alternatively, we can generalize method…

EN,M =
MX
k=1

INk I =
¯̄̄
1 +Ake

iχei2πk/M
¯̄̄2

where

New term: Allow different 
amplitudes on each shot
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Non-Sinusoidal Patterns - Theory

Different field amplitudes on each shot can
generate more general non-sinusoidal patterns.
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For example, if N = 3 , M = 3
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Two-Dimensional Patterns - Theory
Method can be extended into two dimensions
using four recording beams.
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For example,
N=8, M=14

With S. Bentley, Adelphi University



Conclusions

Ongoing research
Construct an intense light source based on high-gain optical 
parametric amplification

Demonstrate quantum lithography

PMMA is a suitable multi-photon absorbing material for use in 
quantum lithography

Demonstrated sub-Rayleigh (λ/4) resolution using NL lithography
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Motivation

Entangled position and momentum spaces in 
SPDC involve high dimensional Hilbert spaces.

Questions:
– Effects of free-space propagation on the spatial 

correlations between photons?
– Implications about the entanglement present in the 

system?
– How rapidly do these correlations degrade as a con-
   sequence of loss or propagation through turbulence?
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Propagation of Correlations

Near-�eld Far-�eldIntermediate-�eld

?

Question:  What is going on in the intermediate zone?  Is entanglement “lost”?
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Experimental Set-up

BBO (2 mm)

PBS

Measure coincidence 
events as a function of xi

and xs to map out wave 
function at various 
longitudinal positions.

|ψ(xs, xi)|2
xi

xs

f=100 mm 1:1 imaging

λ = 363.8 nm
w0 = 850 µm
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Near-field Correlations

• Slits/knife edge placed in 
the imaged plane of the 
crystal.

• Strongly correlated 
photon positions.

• Rx = 9.61
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Far-field Correlations

• Slits/knife edge placed in 
the focal plane of the 
lens.

• Strongly anti-correlated 
photon positions.

• Rx = 28.52 
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The Intermediate Zone?

• Slits moved behind 
image plane 
(12 cm behind image 
plane or
14.5 cm after crystal).

• Little residual spatial 
correlations.

• Rx = 1.19
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Migration of Entanglement to Phase

• At a particular propagation distance z0 the amplitude-
squared wave function will become separable, although the 
wave function itself is entangled, i.e.

• The entanglement has migrated to phase.  We need 
interferometric methods to get information about the 
entanglement.

|ψ(xs, xi)|2 = f(xs)g(xi)
ψ(xs, xi) =

p
f(xs)g(xi)e

iφ(xs,xi)

|ψ(xs, xi) + ψ(xs,−xi)|2
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Experiment to Detect Phase Entanglement

Same as before, but with 
a rotational shearing 
interferometer  in idler 
arm.

Superimposes image
with rotated version 
of itself |ψ(xs, xi) + ψ(xs,−xi)|2



Conclusions

• We have experimentally investigated the 
propagation of spatial correlations in SPDC.

• The apparent disappearance of entanglement can 
be explained by the migration of entanglement from 
intensity to the phase of the wave function.

• Rotational shearing interferometers should enable 
us to recover the entanglement information in the 
intermediate zones.



Objectives

• Develop sub-Rayleigh photo-lithography

• Develop related imaging modalities

• Exploit entanglement in large Hilbert spaces 
for imaging applications

Approach
• Develop sensitive multiphoton lithographic

materials

•

Accomplishments
• Established PMMA as a suitable lithographic

material
•

Quantum Imaging:   New Methods and Applications
Quantum Lithography and Large Entanglement

• Develop means of minimizing the loss of 
quantum coherence due to propagation

Make use of high-gain OPA as source of 
light for quantum lithography

Exploit continuous-variable entanglement to
produce high-dimensional entanglement

Develop imaging protocols based on high-
dimensional entanglement

•

•

Demonstrated ability to write λ/6 features

Developed protocol for writing non-sinusoidal
features
Performed study of properties of OPA as a

Performed measurements of modification of
entanglement upon propagation

•

•

•

R W Boyd, University of Rochester

source for quantum lithography
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