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Slow- and fast-light: fundamental limitations
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We present an analysis of the propagation of light pulses through materials
possessing extreme values of the group velocity. We begin with an analysis of the
behaviour that occurs upon propagation through materials possessing simple
Lorentzian gain or absorption lines or materials possessing sharp dips in gain or
absorption features. We also describe how more complicated lineshapes can be
used to tailor the dispersion of a slow-light system. We furthermore present an
analysis of fundamental limitations to how many pulse widths a pulse of light can
be delayed or advanced. We show how these mechanisms lead to different limits
for slow and fast propagation media.

1. Introduction

In recent years, many researchers have been intrigued by the recently acquired ability
to study light propagation under highly exotic conditions [1, 2]. Equally exciting is
the possibility that these techniques will lead to useful applications in the fields of
telecommunications and electronics [3, 4]. This paper is devoted to the examination
of some fundamental aspects of slow- and fast-light propagation. In particular, we
make a careful examination of the role of atomic resonances in achieving extreme
values of the light propagation velocity, and we analyse some of the physical
processes that can pose a limitation on how much a pulse of light can be delayed
or advanced upon propagation through a resonant medium.

2. Methods for controlling the speed of light

We begin by making some general observations regarding several of the mechanisms
that have been used to control the velocity of light.

We first note that the most dramatic modifications of the velocity of light are
often those based on the exploitation of atomic resonances. The reason for this
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7 behaviour is the following. The velocity with which pulses of light propagate through

a material system is conventionally described by the group velocity

vg ¼
c

ng
, ð1Þ

where the group index is given by

ng ¼ nþ !
dn

d!
: ð2Þ

In these equations, c is the speed of light in vacuum, ! is the angular frequency of the
optical radiation, and n is the usual refractive index. In essentially all slow-, fast- and
backwards-light situations, the second term in the expression for ng dominates.
Thus, highly dispersive media are best suited for displaying extreme values of the
group velocity, and sharp spectral features such as those encountered in atomic
vapours are well suited for producing these effects. Note that dn=d! can be either
positive or negative. When the group index is large and positive, one speaks of slow
light [5–12]; when the group index is either negative or positive and less than unity
one speaks of fast light [13–18]. The special situation in which the group index is
negative is sometimes known as backwards light. Backwards light is considered to be
a form of fast light because, even though the peak of the pulse moves backwards
within the material, the peak emerges from the material earlier than it would for
propagation through an equal length of vacuum. Also intriguing is the observation
that certain material systems can display either slow- or fast-light depending on the
details of the experimental conditions [19, 20].

The simplest procedure for obtaining extreme values of the group velocity is to
make use of the linear optical response of an isolated absorption or gain resonance.
This situation is illustrated in figure 1. The case of an absorption resonance is

n

ng

0

Absorption
resonance

Slow-light

Fast-light

n

ng

0

Gain
resonance

g

Fast-light

Slow-light

(a) (b)

Figure 1. Slow- and fast-light based on isolated atomic resonances: (a) absorption
resonance; (b) gain resonance.
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7 illustrated on the left of the figure and that of a gain resonance on the right of the

figure. Associated with the absorption or gain resonance is a rapid frequency
variation of the refractive index, as required by Kramers–Kronig relations, which
is illustrated in the central panel on each side. Note that the sense of the frequency
variation is exactly opposite in the two cases. The bottom panel on each side shows
the resulting variation of the group index, as predicted by equation (2). Note that, for
an isolated absorption resonance, fast-light occurs on line centre and slow-light
occurs in the wings of the line; the situation is just the opposite for the case of a gain
resonance. Because of the large attenuation that light experiences at the centre of a
strong absorption resonance, it is difficult (but not impossible [13]) to observe fast
light under these circumstances.

In most practical uses of slow- and fast-light it is necessary to be able to actively
control the value of the group velocity. Nonlinear optical methods are often used to
achieve this control of the group velocity. For example, electromagnetically induced
transparency [9], coherent population oscillations [10], and saturated absorption [11]
have been used to create narrow transparency windows in absorbing materials.
The variation in refractive index associated with these absorption dips can be used to
create slow- and fast-light. This situation is illustrated on the left-hand side of
figure 2, with the analogous situation for a spectral hole in a gain medium illustrated
on the right. As in figure 1, the central panels show the associated variation in
refractive index and the lower panels show the variation of the group index. Again,
in both cases either slow- or fast-light can be obtained depending on the detuning
from line centre.

In certain applications of slow- and fast-light, it is desirable to tailor the
dispersion properties to minimize the effect of pulse distortion. The procedure of
Stenner et al. [12] is shown in figure 3. These researchers make use of a double gain
line to flatten the gain profile of their material system. As a result, the refractive index
profile has the form shown in the lower panel. Note that the region of nearly linear

n

ng
Slow-light

Fast-light

n

ng

Dip in
gain 
feature

g

Fast-light

Slow-light

0 0

Dip in
absorption
feature

(a) (b)

Figure 2. Slow- and fast-light based on a dip in (a) a gain or (b) absorption feature.
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dependence of index of refraction upon detuning is larger in this case than for a
single gain line. As a result, short optical pulses, which necessarily possess a broad
frequency spectrum, will suffer less distortion when propagating through the double-
gain-line system.

3. Fundamental limits on slow- and fast-light

A key figure of merit for many slow- and fast-light systems is the number of pulse
widths of delay or advancement that the system can produce. This number, which we
will call the normalized delay or advancement, is equal to the number of pulses that
can be contained at any time within the material and is a measure of the information
storage capacity of the system. There is considerable conceptual and practical
interest in determining what fundamental physical processes, if any, pose a limitation
on how large this storage capacity can be [21–26]. In many situations, this storage
capacity is limited by pulse distortion that will accompany large propagation
distances. Pulse distortion is caused primarily by group velocity dispersion and
spectral reshaping of the input pulse [23]. When working at or near line centre, the
situation considered in the present paper, spectral reshaping, is the dominant
mechanism. When operating far from line centre, group velocity dispersion is the
dominant effect.
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Contributions to
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Single gain line

Extended region of
linear dependence
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profile
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Figure 3. Example of disperson management in a slow-light system [12]. The use of a
spectrally flattened, double gain line (a) produces a broader spectral region of nearly linear
dispersion (b). (The colour version of this figure is included in the online version of the
journal.)
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7 As is well known, for a slow-light medium the pulse will tend to broaden in time

upon propagation, whereas for a fast-light medium the pulse will tend to become
narrower [22]. If the limit on pulse broadening is set to be a factor of 21=2 and the
limit on pulse narrowing is set so that to first order the pulse becomes infinitesimally
short, we find that the maximum propagation distance is set by the following
inequality:

�L � ð�TÞ2: ð3Þ

Here � is the line-centre gain or absorption coefficient, L is the length of the medium,
T is the pulse length, and � is the relevant linewidth, that is, the width of the isolated
feature for the example given in figure 1 or of the dip in the overall profile for the
example given in figure 2. The conclusion of equation (3) follows, for example, from
the argument used to go from equation (13) to (14) in [23]. The maximum delay or
advancement is obtained through use of this maximum value of L and is given by

�T

T
¼

1

2ð21=2Þ
ð�LÞ1=2: ð4Þ

For the case of a slow-light system, there appears to be no fundamental limits on the
extent to which one can delay a pulse of light [23], although there are very serious
practical problems [24, 25]. Conversely, as we shall demonstrate below, for a fast-
light system there seem to be limitations of a nearly fundamental nature that
determine how much one can advance a pulse of light [22]. This limitation is often
at most two pulse widths of advancement and in practice is often still more
restrictive. The question then is raised as to why the two situations are so different.

At first glance, the answer to this question may appear to be almost obvious.
Causality requirements, for example, limit how far the information content of a pulse
of light can be advanced in time, but place no limit on how much it can be delayed.
However, upon reflection one concludes that this explanation cannot be adequate,
because causality places a restriction on the information velocity [15] but not on the
group velocity, the quantity that we are concerned with here. Moreover, we have
seen in the previous section that there appears to be an almost complete symmetry
between slow- and fast-light interactions, at least at the level of the atomic response.

We believe that we have uncovered two key differences between slow- and
fast-light situations that explain why the limitations on fast-light propagation are
so much more restrictive than for slow-light media. These differences are described
next.

(i) Restrictions based on maximum allowable gain or loss. First, we note that for
the case of an absorbing medium, if the attenuation at the signal frequency is
too large, the transmitted pulse will be too weak to be detectable. We
arbitrarily choose a minimum intensity transmission of T ¼ exp ð��0LÞ ¼
exp ð�32Þ at the signal frequency in our studies. The value 32 is chosen
arbitrarily, but our conclusions do not depend critically upon the actual
numerical value. For the case of a gain medium, the nature of the restriction
is somewhat different. Here we require that the gain not be too large at any
frequency, because if the gain is too large at some frequency the process of

Slow- and fast-light: fundamental limitations 2407
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7 amplified spontaneous emission will occur at that frequency and deplete the

gain of the material. We place a numerical restriction that the intensity gain
can be no larger than G ¼ exp ð32Þ, where again there is some arbitrariness in
the choice of the value 32. For the case of an isolated gain or absorption
resonance, of the sort described in figure 1, and for line centre operation,
these conditions place a limit on the amount of advancement or retardation
that can be achieved, and this limit is never more than several pulse
widths. This result follows from equation (4). For �L ¼ 32, we see that
the normalized delay (or advance) can be no larger than approximately 2.
This prediction is confirmed by the numerical results presented below.

Let us next consider the case of a dip in a gain or absorption profile, the

situation illustrated in figure 2. For the case of a gain medium, we find the

same restriction as those given in the previous paragraph, because there is a

limit to the maximum amount of gain even in the distant wings of the dip.

But the situation is different for a dip in an absorption line. Here the

attenuation in the wings of the line can be arbitrarily large, as long as

the loss at line centre is negligible. In this case, there is no limit on how large

the propagation distance can be, and hence there is no limit on how large the

total delay can become. But it should be noted that this ‘trick’ [23] works

only for dips in absorption lines, not in gain lines. Thus, one can achieve

arbitrarily large delay but not arbitrarily large advancement.

(ii) Restrictions based on spectral reshaping of the pulse. Spectral reshaping of the
light pulse is the dominant limiting effect in most slow- and fast-light systems.
This process also behaves differently for slow- and fast-light systems, as we

Input pulse

Slow-light
T(    ) Spectrally narrowed 

output pulse

Fast-light
G(    )

Spectrally broadened 
output pulse

or 

Double-humped
output pulse

Figure 4. Influence of spectral reshaping of a pulse as it propagates through a slow- or fast-
light system. Here T(!) is the transmission spectrum and G(!) is the gain spectrum of the
material. (The colour version of this figure is included in the online version of the journal.)
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7 shall now see though use of figure 4. The spectrum of the input pulse is shown

at the top of the figure. Under many practical situations, the spectral width of
the pulse is comparable to the width of the transparency window. When this
pulse propagates through a slow-light medium, the spectral wings of the pulse
will experience lower transmission than the peak of the pulse. The pulse
thus tends to become narrowed in frequency and hence broadened in time.
This broadening is not desirable, but it is not as deleterious as what happens
for the case of a fast-light medium, as illustrated near the bottom of
the figure. In this case, the pulse broadens spectrally, and under certain
conditions for long propagation distances the spectrum distorts so dramati-
cally as to become multi-peaked. The pulse then shows ringing in the time
domain. The onset of this severe form of pulse distortion determines the
maximum possible extent of pulse advancement.

4. Results of numerical modelling

We have also performed a numerical study of the propagation of optical pulses
through various slow- and fast-light media. Our procedure entails decomposing the
input pulse (which is assumed to be a transform-limited Gaussian pulse) into a
Fourier integral and allowing each frequency component to propagate according to

Eð!, zÞ ¼ Eð!, 0Þ exp f½inð!Þ!=c� �ð!Þ=2�zg, ð5Þ

where nð!Þ is the real part of the refractive index and �ð!Þ is the absorption
coefficient, both evaluated at frequency !. These quantities are calculated from the
Lorentz oscillator model for each of the situations shown in figures 1 and 2. These
quantities thus obey causality (Kramers–Kronig) requirements. Finally, the time
evolution of the output pulse is determined through an inverse Fourier transform.
The results of this study are presented in figure 5. The fast light results are calculated
for line-centre operation with a Lorentzian absorption line with an overall transmis-
sion of exp ð�32Þ. The slow-light results are calculated for line-centre operation with
a Lorentzian gain line with an overall transmission of exp ðþ32Þ. The amount
of advancement and delay were controlled by varying the width of the resonance.
For the slow-light case, we see that the pulse tends to broaden as the amount of delay
is increased. For a delay of more than four pulse widths (of the initial pulse width),
the amount of pulse broadening becomes excessive. For the fast-light case, we see
that serious pulse breakup occurs for an advancement of two pulse widths.

5. Summary and conclusions

We have presented an analysis of the role of optical resonance in establishing slow
and fast propagation of optical pulses. From the point of view of atomic response
theory, there seems to be nearly complete symmetry between slow- and fast-light
effects, and from this point of view it seems perhaps surprising that in practice it is

Slow- and fast-light: fundamental limitations 2409
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found to be easier to obtain large fractional delays than large fractional advances.

We have identified two physical processes that lead to different behaviour of slow-

and fast-light media. One is that there is a maximum amount of attenuation that can

be tolerated at the signal frequency for an absorbing medium, whereas there is a

maximum amount of amplification that is allowable at any frequency for the case of a

gain medium. The other process is spectral reshaping of the pulse, which

also behaves differently for absorbing and amplifying media. We emphasize that

the analysis of this paper is restricted to the situation in which the light is tuned to

the centre of the resonance. Very large fractional delays have been observed in the

far-detuned wings of absorption lines [11].
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Figure 5. Numercial results illustrating the properties of pulse propagation through slow-
and fast-light media. Note that pulse broadening occurs for the slow-light case, whereas pulse
breakup occurs for the fast-light case when one attempts to advance the pulse more than
approximately two pulse widths. (The colour version of this figure is included in the online
version of the journal.)
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