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Properties of Nonlinear Ring Resonators

Excite an azimuthal mode of a
disk or ring resonator.

Nonlinear phase shift acquired
by light scales as square of 
finesse of resonator.
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Typical application:
enhanced all-optical
switching
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Artificial Materials for Nonlinear Optics
Artifical materials can produce
	 Large nonlinear optical response
	 Large dispersive effects

Examples
Fiber/waveguide Bragg gratings
PBG materials
CROW devices (Yariv et al.)
SCISSOR devices



    Weak pulses spread because of dispersion
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      But intense pulses form solitons through balance of 
	 	 	 	 	 	 	 	 	 	 				                 dispersion and nonlinearity.

Shows slow-light, tailored dispersion, and enhanced nonlinearity

NLO of SCISSOR Devices
(Side-Coupled Integrated Spaced Sequence of Resonators)

 

Optical solitons described by nonlinear Schrodinger equation



GaAs

AlxGa1-xAs
(x = 0.4)

Microdisk Resonator Design 

All dimensions in microns
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Photonic Device Fabrication Procedure
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Disk Resonator and Optical Waveguide in PMMA Resist

AFM



Microresonator-Based Photonic Devices

10 microns

~100 nanometer
gaps

Resonator-Enhanced
 Mach-Zehnder Interferometers 

500 nanometer
guides

2.5 micron
height

5 microns 100 nanometer
gaps

Five-Cell SCISSOR 
with Tap Channel

500 nanometer
guides

2.5 micron
height

J. E. Heebner et. al, Optics Letters, 2004



Microresonator-Based Add-Drop Filter
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Fn

Slow Light and SCISSOR Structures
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Phase Characteristics of Micro-Ring Resonator
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Studies of Fiber Ring Resonators

Using fiber connectors and variable couplers, it is
straightforward to investigate a wide variety of
configurations and to vary the resonator finesse.
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Transmission Characteristics of Fiber Ring Resonator
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Phase Characteristics of Fiber Ring Resonator
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Place ring resonator inside 
Mach-Zhender interferometer 
and measure transmission 
versus wavelength. 



Phase Characteristics of Fiber Ring Resonator
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Fiber-Resonator Optical Delay Line
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with Deborah Jackson, JPL



Ring Resonators Have Highly
Controllable Optical Properties

Both slow and superluminal propagation can occur.

Even the sign of the GVD parameter can be
controlled.



Frequency Dependence of GVD and SPM Coefficients
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Fundamental Soliton
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simulation assumes a 
chalcogenide/GaAs-

like nonlinearity

5 µm diameter 
resonators with a 

finesse of 30

SCISSOR may be 
constructed from 100 
resonators spaced by 

10 µm for a total length 
of 1 mm 

soliton may be excited 
via a 10 ps, 125mW 

pulse



Dark Solitons 
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SCISSOR system also supports the propagation of dark solitons.



"Fast" (Superluminal) Light in SCISSOR Structures
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Thank you for your attention. 



Nonlinear Schrödinger Equation (NLSE)

Fundamental Soliton Solution

Propagation Equation for a SCISSOR

L
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ei
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By arranging a spaced sequence of resonators, side-coupled to 
an ordinary waveguide, one can create an effective, structured 
waveguide that supports pulse propagation in the NLSE regime.

Propagation is unidirectional, and there is NO photonic bandgap  
to produce the enhancement.  Feedback is intra-resonator and 
not inter-resonator.
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Performance of SCISSOR as Optical Delay Line




