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Outline of the Presentation

1.  How to slow down the speed of light -  conceptual matters

2.  Slow light using electromagnetically induced transparency

3.  Slow light in room temperature solids

4.  What about fast light (group velocity > c)?

5.  Applications of slow and fast light

Overview:  Boyd and Gauthier, “Slow and Fast Light,” in Progress in Optics, 43, 2002.





Dispersion of Water Waves

* from F. Bitter and H. Medicus, Fields and particles; an introduction to 
electromagnetic wave phenomena and quantum physics



Review of Slow-Light Fundamentals

slow-light medium, ng >> 1

Tg =
L

vg
=
Lng
c

ng = n+ ω
dn

dω

Tdel = Tg − L/c =
L

c
(ng − 1)

group velocity:  

group index:

group delay:

controllable delay:

vg =
c

ng

L

To make controllable delay as large as possible:
	 •  make L as large as possible (reduce residual absorption)
	 •  maximize the group index



Switch to Overheads



Approaches to Slow Light Propagation

•  Use of quantum coherence (to modify the spectral
    dependence of the atomic response)

e.g., electromagnetically induced transparency

•  Use of artificial materials (to modify the optical
    properties at the macroscopic level)

e.g., photonic crystals (strong spectral variation of
refractive index occurs near edge of photonic
bandgap)







Slow Light in Atomic Vapors 
 

Need to minimize absorption  
 
•  Work far off resonance  
 (See papers of Howell group at this conference) 
 
•  Work on resonance and use electromagnetically 
   induced transparency (EIT) 
   (Hau, Harris, Welch, Scully, Budker, and many others) 





Challenge/Goal

Slow light in a room-temperature solid-state material.

Solution:  Slow light enabled by coherent population 
	 	 oscillations (a quantum coherence effect that is 
	 	 relatively insensitive to dephasing processes).



Slow Light in Ruby

Recall that ng = n + ω(dn/dω).    Need a large dn/dω.    (How?)

Kramers-Kronig relations:
      Want a very narrow feature in absorption line.

Well-known “trick” for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line;  requires T  << T2 1.

1/T2 1/T1

inhomogeneously
broadened medium

homogeneously
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003).



Argon Ion Laser
Ruby
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Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby) 
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Alexandrite Displays both Saturable and Reverse-Saturable Absorption  
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•  Both slow and fast propagation observed in alexandrite

Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

boyd



 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms correponds to a velocity of -800 m/s 

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003



Numerical Modeling of Pulse Propagation
Through Slow and Fast-Light Media

Numerically integrate the paraxial wave equation

∂A
∂z

− 1
vg

∂A
∂t

= 0

and plot A(z,t) versus distance z.

Assume an input pulse with a Gaussian temporal profile.

Study three cases:

Slow light   vg = 0.5 c

Fast light   vg = 5 c   and  vg = -2 c



Pulse Propagation through a Slow-Light
Medium (ng = 2,  vg = 0.5 c)




Pulse Propagation through a Fast-Light
Medium (ng = .2, vg = 5 c)




Pulse Propagation through a Fast-Light
Medium (ng = -.5, vg = -2 c)




Slow and Fast Light in an Erbium Doped Fiber Amplifier

6 ms

outin

•  Fiber geometry allows long propagation length
•  Saturable gain or loss possible depending on
   pump intensity
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Schweinsberg, Lepeshkin, Bigelow, Boyd, and Jarabo, Europhysics Letters, 73, 218 (2006).



Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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We time-resolve the propagation 
of the pulse as a function of 
position along the erbium-
doped fiber.

Procedure
 •  cutback method
 •  couplers embedded in fiber

1550 nm laser ISO
80/20

coupler

980 nm laser
WDM

WDM
1550
980

EDF

Ref

Signal

or

G. M. Gehring, A. Schweinsberg, C. Barsi, N. Kostinski, 
R. W. Boyd,  Science 312, 985 2006.



Experimental Results:  Backward Propagation in Erbium-Doped Fiber

Normalized:  (Amplification removed numerically)




Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier
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Observation of Backward Pulse Propagation
 in an Erbium-Doped-Fiber Optical Amplifier

Summary:  

“Backwards” propagation is a realizable physical effect.

(Of course, many other workers have measured negative
time delays. Our contribution was to measure the pulse 
evolution within the material medium.)



Slow Light and Optical Buffers

All-Optical Switch Use Optical Buffering to Resolve 
Data-Packet Contention 

input
ports

output
portsswitch

But what happens if two
data packets arrive 
simultaneously? 

slow-light
medium

Controllable slow light for optical 
buffering can dramatically increase
system performance.  

Daniel Blumenthal,  UC  Santa Barbara;   Alexander Gaeta, Cornell University;  Daniel Gauthier, Duke 
University;  Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester



Review of Slow-Light Fundamentals

slow-light medium, ng >> 1

Tg =
L

vg
=
Lng
c

ng = n+ ω
dn

dω

Tdel = Tg − L/c =
L

c
(ng − 1)

group velocity:  

group index:

group delay:

controllable delay:

vg =
c

ng

L

To make controllable delay as large as possible:
	 •  make L as large as possible (reduce residual absorption)
	 •  maximize the group index



Systems Considerations: Maximum Slow-Light Time Delay

Proposed applications: controllable optical delay lines
optical buffers, true time delay for synthetic aperture radar.

Key figure of merit:
normalized time delay = total time delay / input pulse duration

≈ information storage capacity of medium

“Slow light”:   group velocities < 10-6 c !

Best result to date:  delay by 4 pulse lengths (Kasapi et al. 1995)

But data packets used in telecommunications contain ≈ 103 bits

What are the prospects for obtaining slow-light delay lines with 
103 bits capacity?
 Boyd, Gauthier, Gaeta, and Willner, Phys. Rev. A 71, 023801, 2005.









Other Talks from My Group

MC6 • 3:15 p.m.
Room Temperature Slow Light with 17 GHz Bandwidth in
Semiconductor Quantum Dots, Giovanni Piredda, Aaron
Schweinsberg, Robert W. Boyd; Inst. of Optics, USA. We demonstrate
the delay of a 25 ps pulse by 10% of its FWHM using coherent
population oscillations in PbS quantum dots at room temperature.
The 17 GHz bandwidth is adequate for telecommunications
applications.

ME1• 6:00 p.m.
Slow Light with Gain Induced by Three Photon Effect in Strongly
Driven Two-Level Atoms, Yuping Chen1,2, Zhimin Shi1, Petros Zerom1,
Robert W. Boyd1; 1Inst. of Optics, Univeristy of Rochester, USA, 2Inst. of
Optics and Photonics, Dept. of Physics, Shanghai Jiao Tong Univ., China.
Slow light induced by the three-photon effect is studied theoretically.
The effect results from the modification of the atomic-level structure
by the ac-Stark effect. A group index of the order of 106 can be
obtained.

WA2 • 8:30 a.m.
Backwards Pulse Propagation with a Negative Group Velocity in
Erbium Doped Fiber, George M. Gehring, Aaron Schweinsberg, Robert
W. Boyd; Inst. of Optics, Univ. of Rochester, USA. Simple models
predict that pulses propagate "backwards" through a material with a
negative group velocity. We find that the peak of the pulse does
propagate backwards, even though no energy propagates in that
direction.

WB3 • 11:15 a.m.
Distortion-Reduced Pulse-Train Propagation with Large Delay in a
Triple Gain Media, Zhimin Shi1, Robert W. Boyd1, Zhaoming Zhu2,
Daniel J. Gauthier2, Ravi Pant3, Michael D. Stenner3,4, Mark A. Neifeld3,4;
1Inst. of Optics, Univ. of Rochester, USA, 2Dept. of Physics, and
Fitzpatrick Ctr. for Photonics and Communications Systems, Duke Univ.,
USA, 3Optical Sciences Ctr., Univ. of Arizona, USA, 4Dept. of Electrical
and Computer Engineering, Univ. of Arizona, USA. A slow light
medium based on three closely spaced gain lines is studied. Both
numerical calculations and experiments demonstrate that large delay
can be achieved with large bandwidth and with very small
distortion.
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Laser Fiber Amplifier
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Slow-Light via Stimulated Brillouin Scattering 
•  Rapid spectral variation of the refractive response associated 
      with SBS gain leads to slow light propagation
•  Supports bandwidth of 100 MHz, large group delays
•  Even faster modulation for SRS

in out

 typical data

Okawachi, Bigelow, Sharping, Zhu, Schweinsberg, Gauthier, Boyd, and Gaeta Phys. Rev. Lett. 94, 153902 (2005).  
Related results reported by Song, González Herráez and Thévenaz, Optics Express 13, 83 (2005).



Slow Light via Coherent Population Oscillations

1/T1

PRL 90,113903(2003); Science, 301, 200 (2003)

•  Ground state population oscillates at beat frequency δ (for δ < 1/T1).  

Γ
ba

=
1
T

1
2γ

ba
=

2
T

2

a

b
saturable
medium

ω

ω + δ ω + δ

E1,

E3,

measure 
absorption

•  Population oscillations lead to decreased probe absorption  
    (by explicit calculation), even though broadening is homogeneous.  

•  Rapid spectral variation of refractive index associated with spectral hole 
    leads to large group index.

•  Ultra-slow light (ng > 106) observed in ruby and ultra-fast light 
    (ng = –4 x 105) observed  in alexandrite by this process.

•  Slow and fast light effects occur at room temperature!

absorption
profile



Advantages of Coherent Population
Oscillations for Slow Light

Works in solids
Works at room temperature
Insensitive of dephasing processes
Laser need not be frequency stabilized
Works with single beam (self-delayed)
Delay can be controlled through input intensity



Slow Light via Coherent Population Oscillations
•  Ultra-slow light (ng > 106) observed in ruby and ultra-fast light 
    (ng = –4 x 105) observed in alexandrite at room temperature.
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• Slow and fast light in an EDFA

• Slow light in PbS quantum dots

• Slow light in a SC optical amplifier
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Thank you for your attention!

Our results are posted on the web at:
http://www.optics.rochester.edu/~boyd

And thanks to NSF and DARPA for
financial support!



Just ask

Evelyn Hu

Watt Webb (or James Watt)

Michael Ware

Wen I Wang

Kam Wai Chan

Not to mention
Lene Hau

Physics is all about asking the right questions




