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The Promise of
Nonlinear Optics

Nonlinear optical techniques hold great

promise for applications including:

•  Photonic Devices

•  Quantum Imaging

•  Quantum Computing/Communications

•  Optical Switching

•  Optical Power Limiters

•  All-Optical Image Processing

But the lack of high-quality photonic
materials is often the chief limitation in
implementing these ideas.



Approaches to the Development of
Improved NLO Materials

•  New chemical compounds

•  Quantum coherence (EIT, etc.)

•  Composite Materials:
(a) Microstructured Materials, e.g.

Photonic Bandgap Materials,
Quasi-Phasematched Materials, etc

(b) Nanocomposite Materials

These approaches are not incompatible and in fact can be
exploited synergistically!



Nanocomposite Materials for Nonlinear Optics

• Maxwell Garnett • Bruggeman  (interdispersed)

• Fractal Structure • Layered
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Gold-Doped Glass:  A Maxwell-Garnett Composite

gold volume fraction approximately 10-6

gold particles approximately 10 nm diameter

 • Red color is because the material absorbs very strongly
   at the surface plasmon frequency, which is in the blue.  

 • Composite materials can possess properties very
  different from those of their constituents

Developmental Glass, Corning, Inc. 

Red Glass Caraffe,
Nurenberg, ca. 1700
Bielefeld museum.



Demonstration of Enhanced NLO Response

• Alternating layers of TiO2 and 
the conjugated polymer PBZT.

•  Measure NL phase shift as a 
function of angle of incidence

Fischer, Boyd, Gehr, Jenekhe, Osaheni, Sipe, and Weller-Brophy,  Phys. Rev. Lett. 74, 1871, 1995.
Gehr, Fischer, Boyd, and Sipe, Phys. Rev. A 53, 2792 1996. 
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Enhanced EO Response of Layered
Composite Materials
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•    AF-30 (10%) in polycarbonate (spin coated)
n=1.58 ε(dc) = 2.9
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AF-30 / polycarbonate

3.2 times enhancement in agreement with theory

 R. L. Nelson, R. W. Boyd, Appl. Phys. Lett. 74, 2417, 1999.
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R.S. Bennink, Y.K. Yoon, R.W. Boyd, and J. E. Sipe Opt. Lett. 24, 1416, 1999.  

•  Metals have very large optical nonlinearities but low transmission.  

•  Solution:  construct  metal-dielectric PBG structure.
   (linear properties studied earlier by Bloemer and Scalora) 

pure metal
80 nm of copper
T= 0.3%

PBG structure
80 nm of Cu
   (total)
T= 10%

•  Low transmission is because metals are highly reflecting 
   (not because they are absorbing!). 

Accessing the Optical Nonlinearity of Metals 
with Metal-Dielectric PBG Structures

40 times enhancment of NLO response is predicted!



Z-Scan Comparison of M/D PBG and Bulk Sample 
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Interest in Slow Light

Fundamentals of optical physics

Intrigue: Can (group) refractive index really be 106?

Optical delay lines, optical storage, optical memories

Implications for quantum information



Slow Light

group velocity  ≠≠≠≠  phase velocity











Slow Light in Atomic Media

Slow light propagation in atomic media (vapors and
BEC), facilitated by quantum coherence effects, has
been successfully observed by many groups.





Challenge/Goal

Slow light in room-temperature solid-state material.

•   Slow light in room temperature ruby

(facilitated by a novel quantum coherence effect)

•    Slow light in a structured waveguide



Slow Light in Ruby

Need a large dn/dw.    (How?)

Kramers-Kronig relations:
      Want a very narrow absorption line.

Well-known (to the few people how know it
well) how to do so:

Make use of “spectral holes” due to
population oscillations.

Hole-burning in a homogeneously
broadened line;  requires T2 << T1.

1/T2 1/T1

inhomogeneously 
broadened medium

homogeneously 
broadened medium
(or inhomogeneously 
broadened)

PRL 90,113903(2003); see also news story in Nature.



Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T2 << T1)

Boyd, Raymer, Narum and Harter, Phys. Rev. A24, 411, 1981.
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Argon Ion Laser
Ruby

f = 40 cm

Function Generator

EO modulator

Digital

Oscilloscope

f = 7.5 cm

Diffuser

Reference Detector

Experimental Setup Used to Observe Slow Light in Ruby

7.25 cm ruby laser rod (pink ruby)
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512 µs
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Alexandrite Displays both Saturable 
and Inverse-Saturable Absorption

T1,m = 260 ms
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 Inverse-Saturable Absorption Produces 
Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 ms corresponds to a velocity of -800 m/s 



Slow and Fast Light --What Next?

Longer fractional delay
(saturate deeper; propagate farther)

Find material with faster response
(technique works with shorter pulses)



Artificial Materials for Nonlinear Optics
Artifical materials can produce
	 Large nonlinear optical response
	 Large dispersive effects

Examples
Fiber/waveguide Bragg gratings
PBG materials
CROW devices (Yariv et al.)
SCISSOR devices



Motivation
To exploit the ability of microresonators to enhance
nonlinearities and induce strong dispersive effects for creating
structured waveguides with exotic properties.

A cascade of resonators side-coupled to an ordinary
waveguide can exhibit:

slow light propagation
induced dispersion
enhanced nonlinearities



Ultrafast All-Optical Switch Based On 
Arsenic Triselenide Chalcogenide Glass

   We excite a whispering gallery mode of a 
     chalcogenide glass disk.   

   The nonlinear phase shift scales as the square of the
    finesse F of the resonator.  (F ≈ 10 2 in our design)

   Goal is 1 pJ switching energy at 1 Tb/sec.  

r
5050

Ring
Resonator

Input-2   

 Output-1

J. E. Heebner and R. W. Boyd, Opt. Lett. 24, 847, 1999.
   (implementation with Dick Slusher, Lucent)

Input-1 

 Output-2





    Weak pulses spread because of dispersion
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      But intense pulses form solitons through balance of 
	 	 	 	 	 	 	 	 	 	 				                 dispersion and nonlinearity.

Shows slow-light, tailored dispersion, and enhanced nonlinearity

NLO of SCISSOR Devices
(Side-Coupled Integrated Spaced Sequence of Resonators)

 

Optical solitons described by nonlinear Schrodinger equation
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Nanofabrication

•  Materials (artificial materials)

•  Devices

(distinction?)



GaAs

AlxGa1-xAs
(x = 0.4)

Microdisk Resonator Design 

All dimensions in microns
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Photonic Device Fabrication Procedure

PMMA

AlGaAs-GaAs

    structure

Oxide (SiO2)

AlGaAs-GaAs

    structure

Oxide (SiO2)

PMMA

AlGaAs-GaAs

    structure

PMMA

Oxide (SiO2)

(2) Deposit oxide

AlGaAs-GaAs

    structure

(1) MBE growth

(3) Spin-coat e-beam resist

(4) Pattern inverse with

      e-beam & develop
(6) Remove PMMA

(7) CAIBE etch AlGaAs-GaAs

(8) Strip oxide

AlGaAs-GaAs

    structure

Oxide (SiO2)

AlGaAs-GaAs

    structure

AlGaAs-GaAs

    structure

Oxide (SiO2)

(5) RIE etch oxide

AlGaAs-GaAs

    structure

Oxide (SiO2)



Disk Resonator and Optical Waveguide in PMMA Resist

AFM



Photonic Devices Written
Into PMMA Resist



10 microns

All-Pass Racetrack Microresonator

100 nanometer gap

500 nanometer
guide widths

2.5 micron
height



5 microns 100 nanometer
gaps

Five-Cell SCISSOR with Tap Channel

500 nanometer
guides

2.5 micron
height



10 microns

~100 nanometer
gaps

Resonator-Enhanced Mach-Zehnder Interferometers
 

500 nanometer
guides

2.5 micron
height



Laboratory Characterization
of Photonic  Structures

•  Characterization of fiber ring-resonator devices
(Proof of principle studies)

•  Characterization of nanofabricated devices



Fiber-Resonator Optical Delay Line
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F = 51

Transmission Characteristics of Fiber Ring Resonator
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Phase Characteristics of Fiber Ring Resonator
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Phase Characteristics of Fiber Ring Resonator
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"Fast" (Superluminal) Light in SCISSOR Structures
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Laboratory Characterization
of Photonic  Structures

•  Characterization of fiber ring-resonator devices
(Proof of principle studies)

•  Characterization of nanofabricated devices



Microresonator-Based Add-Drop Filter
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Phase Characteristics of Micro-Ring Resonator
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Summary

Artificial materials hold great promise for
     applications in photonics because of

     • large controllable nonlinear response

     • large dispersion controllable in magnitude and sign

Demonstration of slow light propagation in ruby



Real Summary

Nonlinear optics is an extremely exciting research area
because it includes topics that range from fundamental
physics to numerous applications.



Thank you for your attention. 

Feliz Cinco de Mayo. 



Objective:
Obtain high
sensitivity, high
specificity detection
of pathogens through
optical resonance

Approach:
Utilize high-finesse
whispering-gallery-
mode disk resonator.

Presence of pathogen
on surface leads to
dramatic decrease in
finesse.

Simulation of device operation:

Intensity distribution in 
absense of absorber.

Intensity distribution in 
presence of absorber.

                                   Alliance for Nanomedical Technologies

Photonic Devices for Biosensing

FDTD



GaAs or AlGaAsGaAs or AlGaAs
SiO2

Deposition of Surface Binding Layer

GaAs or AlGaAs
SiO2

GaAs or AlGaAs
SiO2

~1.2 nm

~300 nm

~12 nm

~1-5
microns

GaAs or AlGaAs
SiO2

1) Bare device surface

target
pathogen

2) SiO2 layer deposited by PECVD

3) Silane coupling agent deposited on surface

(C6H16O3SSi)

3-Mercaptopropyl
Trimethoxysilane (MPT)

4) Antibodies washed over surface / 
adhere to MPT

5) Pathogen captured by 
antibody layer



streptavidin over biotin on GaAs

streptavidin over biotin  
     on silica-coated GaAs

biotin on silica-coated GaAs

Notes:  1. false-color images of fluorescent intensity are shown
            2. streptavidin is tagged with the dye Cy3

Demonstration of Selective Binding onto GaAs

University of Rochester/Corning Collaboration

biotin on GaAs

biotin on microscope slide

streptavidin over biotin 
    on microscope slide



Photonic Structures --What Next?
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Frequency Dependence of GVD and SPM Coefficients
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Fundamental Soliton
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Dark Solitons 
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SCISSOR system also supports the propagation of dark solitons.
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Spectral Dependence of the Nonlinear Response

0

0.5

1.0

1.5

2.0

500 550 600 650 700

PBG

Bulk

wavelength, nm

Im
 f

N
L

OPG:

Q = 2 to 5 mJ

I @ 100 MW/cm2

t = 25 ps



Is This a Good Idea?

Vollmer et al., Appl. Phys. Lett. 80, 4057 (2002).

Protein detection by optical shift of a resonant microcavity




