

CLEO/QELS 2007 Baltimore Convention Center, Baltimore, Maryland

Effects of Turbulence on the Transverse Position-Momentum Entanglement of Biphotons

Kam Wai Chan, Malcolm N. O'Sullivan-Hale, Anand Jha, and Robert W. Boyd

The Institute of Optics, University of Rochester Rochester, New York 14627 USA

Glenn A. Tyler

The Optical Sciences Company, P.O. Box 25309 Anaheim, California 92825 USA

May 9, 2007; Session QWF2

Motivations

- 1. Entanglement provides secure information transmission
- 2. High dimensional Hilbert space (qubits only 2D)
 - time-energy
 - transverse spatial coordinates of biphotons

□ orbital angular momentum (OAM)

- transverse linear position / momentum (quantum image)
- 3. Long distance communication in free space (turbulence effect)

Generation of Entangled Photons

Type-II Spontaneous Parametric Down-Conversion (SPDC)

Generation of Entangled Photons

Type-II Spontaneous Parametric Down-Conversion (SPDC)

We will restrict ourselves to degenerate and nearly collinear SPDC taking,

$$2\omega_s = 2\omega_i = \omega_p$$

$$2k_s \simeq 2k_i \simeq k_p$$

Theory of SPDC (Gaussian Approx. 1)

The biphoton state is given by

$$|\Psi
angle = \int d\vec{p_s} \ d\vec{p_i} \ \Phi(\vec{p_s}, \vec{p_i}) \ a_s^{\dagger}(\vec{p_s}) a_i^{\dagger}(\vec{p_i}) |0,0
angle$$

with the wave function in momentum space

$$\Phi(\vec{p}_s, \vec{p}_i) = N E_p(\vec{p}_s + \vec{p}_i) \operatorname{sinc}\left(\frac{\Delta_k L}{2}\right) \exp\left(i\frac{s_k L}{2}\right)$$

where N is a normalization factor,

 $\Delta_k = k_p(\vec{p_s} + \vec{p_i}) - k_s(\vec{p_s}) - k_i(\vec{p_i}) \text{ and } s_k = k_p(\vec{p_s} + \vec{p_i}) + k_s(\vec{p_s}) + k_i(\vec{p_i})$

 E_p is the transverse profile of the pump.

Theory of SPDC (Gaussian Approx. 1)

The biphoton state is given by

$$|\Psi
angle = \int d\vec{p_s} \ d\vec{p_i} \ \Phi(\vec{p_s}, \vec{p_i}) \ a_s^{\dagger}(\vec{p_s}) a_i^{\dagger}(\vec{p_i}) |0,0
angle$$

with the wave function in momentum space

$$\Phi(\vec{p}_s, \vec{p}_i) = N E_p(\vec{p}_s + \vec{p}_i) \operatorname{sinc}\left(\frac{\Delta_k L}{2}\right) \exp\left(i\frac{s_k L}{2}\right)$$
$$\to N \exp\left[-\frac{1}{2B}(\vec{p}_s + \vec{p}_i)^2\right] \exp\left[-\frac{1}{2A}(\vec{p}_s - \vec{p}_i)^2\right]$$

Theory of SPDC (Gaussian Approx. 1)

The biphoton state is given by

$$|\Psi\rangle = \int d\vec{p}_s \ d\vec{p}_i \ \Phi(\vec{p}_s, \vec{p}_i) \ a_s^{\dagger}(\vec{p}_s) a_i^{\dagger}(\vec{p}_i) |0,0\rangle$$

with the wave function in momentum space

$$\Phi(\vec{p}_s, \vec{p}_i) = NE_p(\vec{p}_s + \vec{p}_i) \operatorname{sinc}\left(\frac{\Delta_k L}{2}\right) \exp\left(i\frac{s_k L}{2}\right)$$
$$\to N \exp\left[-\frac{1}{2B}(\vec{p}_s + \vec{p}_i)^2\right] \exp\left[-\frac{1}{2A}(\vec{p}_s - \vec{p}_i)^2\right]$$
ace)
$$\Psi(\vec{x}_s, \vec{x}_i) \to N \exp\left[-\frac{B}{2}(\vec{x}_s - \vec{x}_i)^2\right] \exp\left[-\frac{A}{2}(\vec{x}_s + \vec{x}_i)^2\right]$$

(position space)

7

OPTICS Theory of Turbulence

The propagated field in a turbulent medium is given by

[Ref: Milonni, AJP 67, 476(1999)]

$$\hat{E}^{(+)}(\vec{x},z) = e^{ikz} \int d\vec{x}' \ h(\vec{x},\vec{x}',z) e^{i\phi(\vec{x}')} \hat{E}^{(+)}(\vec{x}',0)$$

where

 $h(ec{x},ec{x}',z) = rac{k}{2\pi i z} \exp\left[rac{ik}{2z}(ec{x}-ec{x}')^2
ight]$ (paraxial limit)

The field at z = 0 is given by the Fourier transform of the annihilation operator

$$\hat{E}^{(+)}(\vec{x},0) \sim \int d\vec{q} \ \hat{a}(\vec{q}) \ e^{i\vec{q}\cdot\vec{x}}$$

OPTICS Theory of Turbulence

The propagated field in a turbulent medium is given by

[Ref: Milonni, AJP 67, 476(1999)]

$$\hat{E}^{(+)}(\vec{x},z) = e^{ikz} \int d\vec{x}' \ h(\vec{x},\vec{x}',z) e^{i\phi(\vec{x}')} \hat{E}^{(+)}(\vec{x}',0)$$

- 1. Turbulent medium is reflected from the statistical character of $\phi(\vec{x}')$.
- 2. The medium is replaced by a single "phase screen" accounting for all the phase fluctuation incurred in the propagation to *z*, i.e., $\phi(\vec{x}') = k \int_0^z n(\vec{x}', z') dz'$
- 3. Fluctuating phase: $e^{i[\phi(\vec{x}')-\phi(\vec{y}')]} = e^{-(1/2)D_s(|\vec{x}'-\vec{y}'|)}$ Phase structure function $D_s(|\vec{x}'-\vec{y}'|) = \alpha |\vec{x}'-\vec{y}'|^{5/3}$ (Kolmogorov)

Four-point correlation function

$$G(\vec{x}_{s}, \vec{y}_{s}; \vec{x}_{i}, \vec{y}_{i}) \equiv \langle \Psi | \overline{\hat{E}^{(-)}(\vec{y}_{i}, z_{i}) \hat{E}^{(-)}(\vec{y}_{s}, z_{s}) \hat{E}^{(+)}(\vec{x}_{s}, z_{s}) \hat{E}^{(+)}(\vec{x}_{i}, z_{i})} | \Psi \rangle$$

$$= \iiint d\vec{x}_{s}' d\vec{y}_{s}' d\vec{x}_{i}' d\vec{y}_{i}' T(\cdots) \times G_{0}(\vec{x}_{s}', \vec{y}_{s}'; \vec{x}_{i}', \vec{y}_{i}')$$

SPDC + **Turbulence**

Free space transfer function

$$T(\cdots) \equiv h(\vec{x}_s - \vec{x}'_s, z_s)h^*(\vec{y}_s - \vec{y}'_s, z_s)h(\vec{x}_i - \vec{x}'_i, z_i)h^*(\vec{y}_i - \vec{y}'_i, z_i)$$

All entanglement information is contained in

$$G_0(\vec{x}_s, \vec{y}_s; \vec{x}_i, \vec{y}_i) = e^{-\frac{1}{2}\mathcal{D}_s(|\vec{x}_s - \vec{y}_s|)} e^{-\frac{1}{2}\mathcal{D}_i(|\vec{x}_i - \vec{y}_i|)} \Psi(\vec{x}_s, \vec{x}_i) \Psi^*(\vec{y}_s, \vec{y}_i)$$

Remark:

The turbulent medium induces local decoherence:

- a) pure state \rightarrow mixed state
- b) non-unitary \Rightarrow disentanglement?

Quantification of Entanglement

Biphoton density matrix

$$G_0(\vec{x}_s, \vec{y}_s; \vec{x}_i, \vec{y}_i) = e^{-\frac{1}{2}\mathcal{D}_s(|\vec{x}_s - \vec{y}_s|)} e^{-\frac{1}{2}\mathcal{D}_i(|\vec{x}_i - \vec{y}_i|)} \Psi(\vec{x}_s, \vec{x}_i) \Psi^*(\vec{y}_s, \vec{y}_i)$$

with
$$\Psi(\vec{x}_s, \vec{x}_i) = N \exp\left[-\frac{B}{2}(\vec{x}_s - \vec{x}_i)^2\right] \exp\left[-\frac{A}{2}(\vec{x}_s + \vec{x}_i)^2\right]$$

$$D_s(r) = D_i(r) = \alpha r^{5/3}$$

For CV entanglement

١

The second moments of the variables provide useful information about the degree of entanglement. #

Measures of entanglement

- 1. EPR uncertainty
- 2. Entanglement of formation

Generation 2

Biphoton density matrix

 $G_0(\vec{x}_s, \vec{y}_s; \vec{x}_i, \vec{y}_i) = e^{-\frac{1}{2}\mathcal{D}_s(|\vec{x}_s - \vec{y}_s|)} e^{-\frac{1}{2}\mathcal{D}_i(|\vec{x}_i - \vec{y}_i|)} \Psi(\vec{x}_s, \vec{x}_i) \Psi^*(\vec{y}_s, \vec{y}_i)$

with
$$\Psi(\vec{x}_s, \vec{x}_i) = N \exp\left[-\frac{B}{2}(\vec{x}_s - \vec{x}_i)^2\right] \exp\left[-\frac{A}{2}(\vec{x}_s + \vec{x}_i)^2\right]$$
$$D_s(r) = D_i(r) = \alpha r^p, \qquad p = \frac{5}{3}$$

Covariance matrix

$$\begin{split} \Delta^2 x_s &= \Delta^2 x_i = \frac{1}{4} \left(A^{-1} + B^{-1} \right) \\ \Delta^2 p_s &= \Delta^2 p_i = A + B + \alpha p (p-1) \epsilon^{p-2} - \frac{(\alpha p)^2}{2} \epsilon^{2(p-1)}, \quad \epsilon \to 0 \\ \Delta x_s \Delta x_i &= \frac{1}{4} \left(A^{-1} - B^{-1} \right) \\ \Delta p_s \Delta p_i &= A - B \\ \Delta x_s \Delta p_s &= \Delta x_i \Delta p_i = \Delta x_s \Delta p_i = \Delta x_i \Delta p_s = 0 \end{split}$$

Generation Gaussian Approximation 2

Biphoton density matrix

 $G_0(\vec{x}_s, \vec{y}_s; \vec{x}_i, \vec{y}_i) = e^{-\frac{1}{2}\mathcal{D}_s(|\vec{x}_s - \vec{y}_s|)} e^{-\frac{1}{2}\mathcal{D}_i(|\vec{x}_i - \vec{y}_i|)} \Psi(\vec{x}_s, \vec{x}_i) \Psi^*(\vec{y}_s, \vec{y}_i)$

with
$$\Psi(\vec{x}_s, \vec{x}_i) = N \exp\left[-\frac{B}{2}(\vec{x}_s - \vec{x}_i)^2\right] \exp\left[-\frac{A}{2}(\vec{x}_s + \vec{x}_i)^2\right]$$
$$D_s(r) = D_i(r) = \alpha r^p, \qquad p = \frac{5}{3}$$

Covariance matrix

$$\Delta^{2} x_{s} = \Delta^{2} x_{i} = \frac{1}{4} \left(A^{-1} + B^{-1} \right)$$

$$\Delta^{2} p_{s} = \Delta^{2} p_{i} = A + B + \alpha p (p-1) \epsilon^{p-2} - \frac{(\alpha p)^{2}}{2} \epsilon^{2(p-1)}, \quad \epsilon \to 0$$

$$\Delta x_{s} \Delta x_{i} = \frac{1}{4} \left(A^{-1} - B^{-1} \right)$$

$$\Delta p_{s} \Delta p_{i} = A - B$$
Singularity in $\Delta^{2} p_{s}$

$$\Delta x_{s} \Delta p_{s} = \Delta x_{i} \Delta p_{i} = \Delta x_{s} \Delta p_{i} = \Delta x_{i} \Delta p_{s} = 0$$

Gaussian Approximation 2

Biphoton density matrix

$$G_{0}(\vec{x}_{s}, \vec{y}_{s}; \vec{x}_{i}, \vec{y}_{i}) = e^{-\frac{1}{2}\mathcal{D}_{s}(|\vec{x}_{s} - \vec{y}_{s}|)} e^{-\frac{1}{2}\mathcal{D}_{i}(|\vec{x}_{i} - \vec{y}_{i}|)} \Psi(\vec{x}_{s}, \vec{x}_{i}) \Psi^{*}(\vec{y}_{s}, \vec{y}_{i})$$
with $\Psi(\vec{x}_{s}, \vec{x}_{i}) = N \exp\left[-\frac{B}{2}(\vec{x}_{s} - \vec{x}_{i})^{2}\right] \exp\left[-\frac{A}{2}(\vec{x}_{s} + \vec{x}_{i})^{2}\right]$

$$D_s(r) = \alpha r^{5/3} \longrightarrow \alpha r^{6/3}$$

Expect their impacts to entanglement degradation are very similar.

Gaussian Approximation 2

Biphoton density matrix

$$G_0(\vec{x}_s, \vec{y}_s; \vec{x}_i, \vec{y}_i) = e^{-\frac{1}{2}\mathcal{D}_s(|\vec{x}_s - \vec{y}_s|)} e^{-\frac{1}{2}\mathcal{D}_i(|\vec{x}_i - \vec{y}_i|)} \Psi(\vec{x}_s, \vec{x}_i) \Psi^*(\vec{y}_s, \vec{y}_i)$$

with
$$\Psi(\vec{x}_{s}, \vec{x}_{i}) = N \exp\left[-\frac{B}{2}(\vec{x}_{s} - \vec{x}_{i})^{2}\right] \exp\left[-\frac{A}{2}(\vec{x}_{s} + \vec{x}_{i})^{2}\right]$$

$$D_s(r) = \alpha r^{5/3} - OK \quad \alpha r^{6/3}$$

Covariance matrix

$$\Delta^2 x_s = \Delta^2 x_i = \frac{1}{4} \left(A^{-1} + B^{-1} \right)$$
$$\Delta^2 p_s = \Delta^2 p_i = A + B + 2\alpha$$
$$\Delta x_s \Delta x_i = \frac{1}{4} \left(A^{-1} - B^{-1} \right)$$
$$\Delta p_s \Delta p_i = A - B$$
$$\Delta x_s \Delta p_s = \Delta x_i \Delta p_i = \Delta x_s \Delta p_i = \Delta x_i \Delta p_s = 0$$

No singularity

Phase structure function (Kolmogorov + Gaussian approx.)

Control Parameters

$$D_s(r) = 3.44 \left(\frac{r}{r_0}\right)^{6/3}$$

 $D = 2\Delta x_s = 2\Delta x_i = \sqrt{A^{-1} + B^{-1}}$

 r_0 – the length scale of turbulent structure

D

Effective aperture diameter:

The Institute of W

Control p

parameters – (i) degree of turbulence:
$$\frac{D}{r_0}$$

(ii) degree of initial entanglement: $\eta = \frac{B}{A}$
 $\Psi(\vec{x}_s, \vec{x}_i) = N \exp\left[-\frac{B}{2}(\vec{x}_s - \vec{x}_i)^2\right] \exp\left[-\frac{A}{2}(\vec{x}_s + \vec{x}_i)^2\right]$

Effect of Turbulence to Entanglement

EPR uncertainty

$$\Delta = \sqrt{\Delta^2 (x_s - x_i) + \Delta^2 (p_s + p_i)}$$

In general: $\Delta < 1$ entangled

$$\Delta \geq 1$$
 entangled / disentangled

Giedke et al., PRL 91, 107901 (2003)

Effect of Turbulence to Entanglement

EPR uncertainty

$$\Delta = \sqrt{\Delta^2 (x_s - x_i) + \Delta^2 (p_s + p_i)}$$

Gaussian state:

 $\Delta < 1$ entangled $\Delta > 1$ disentangled

We find #
$$\Delta = \sqrt{\frac{(1+\eta^{-1}) + 3.44 (D/r_0)^2}{1+\eta}}$$

Note:

1. Entanglement of the two photons is totally destroyed if $3.44 \left(\frac{D}{r_0}\right)^2 \geq \eta - \eta^{-1}$

2.
$$2\log \Delta = \log \left[1 + \frac{3.44}{1+\eta^{-1}} \left(\frac{D}{r_0}\right)^2 \right] + \log \left(\frac{1+\eta^{-1}}{1+\eta}\right)$$

Giedke et al., PRL 91, 107901 (2003)

Effect of Turbulence to Entanglement

EPR uncertainty

 $\Delta <$

$$\Delta = \sqrt{\Delta^2 (x_s - x_i) + \Delta^2 (p_s + p_i)}$$

Gaussian state:

$$\Delta < 1$$
 entangled $\Delta \ge 1$ disentangled

We find #
$$\Delta = \sqrt{\frac{(1+\eta^{-1}) + 3.44 (D/r_0)^2}{1+\eta}}$$

Entanglement of formation for Gaussian states

how much entanglement is needed to _ construct the state

$$E_F = c_+ \log c_+ - c_- \log c_-$$

where $c_\pm = rac{1}{4} \left(\Delta^{-1/2} \pm \Delta^{1/2}
ight)^2$

Giedke et al., PRL 91, 107901 (2003)

Experiment & Preliminary Results

Turbulence medium:

heat gun (easy to implement)

The Institute of **Experiment & Preliminary Results**

Summary / Outlook

<u>Summary</u>

- Constructed the theory of SPDC spatial coordinates with turbulence effect
- Approximated the system by a Gaussian model:
 - *initial wave function* (position & momentum coordinates)
 - *turbulence power law* (phase structure function: $5/3 \rightarrow 6/3$)
- Shown effect of turbulence of the entanglement. Entanglement is strongly affected at $D/r_0 > 0.5$.
- Obtained preliminary experimental results

Next steps

- Quantitative measurement of entanglement vs. turbulence effect
- Use adaptive optics to minimize disentanglement

Thank you

Q & A

Acknowledgements:

- US Army Research Office under a MURI grant
- Air Force Office of Scientific Research under STTR contract number FA9550-06-C-0134
- Croucher Foundation