

Influence of Local Field Effects on the Radiative Properties of Nd:YAG Nanoparticles in a Liquid Suspension

Ksenia Dolgaleva and Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, NY 14627

Motivation

- Radiative properties of nanocomposites differ from those of constituent materials.
- Practical interest for application in photonics and laser engineering
- It motivated our investigation of radiative lifetime in Nd:YAG nanoparticles suspended in different liquids.

Outline

- Radiative lifetime in a dielectric
- Local-field effects: different models
- Previously-conducted experiments
- Sample preparation
- Data analysis

Local-field effects

Local-field correction factor:

$$L = \frac{E_{\rm loc}}{E_{\rm av}}$$

Radiative lifetime in a dielectric

$$\frac{1}{\tau_{\rm rad}} = \frac{2\pi}{\hbar} |V_{12}(\omega_0)|^2 \rho(\omega_0)$$

In a dielectric:

Density of states $\rho(\omega_0) \propto n^2$ Coupling coefficient $V_{12}(\omega_0) \propto \frac{L}{\sqrt{n}}$

$$\tau_{\rm rad}^{\rm (diel)} = \frac{\tau_{\rm rad}^{\rm (vac)}}{nL^2}.$$

Local-field-correction factor: Virtual-cavity (Lorentz) model

____ Imaginary sphere (boundary of virtual cavity)

 Inside dipoles' contributions accounted exactly

The dipoles outside the cavity considered as a homogeneous medium

 $b \ll R \ll \lambda$

Lorentz local-field correction factor

Local-field-correction factor: Real-cavity model

Emitters replace part of the volume of the medium

Real-cavity local-field correction factor

$$L = \frac{3n^2}{2n^2 + 1}$$

The two models describe different experimental situations

Lorentz model

$$\tau_{\rm rad}^{\rm (diel)} = \frac{\tau_{\rm rad}^{\rm (vac)}}{n\left(\frac{n^2+2}{3}\right)^2}$$

Dopants in hosts:

- Rare-earth ions in different crystallic lattices and glasses
- Homogeneous dielectrics

Real-cavity model

$$\tau_{\rm rad}^{\rm (diel)} = \frac{\tau_{\rm rad}^{\rm (vac)}}{n \left(\frac{3 n^2}{2 n^2 + 1}\right)^2}$$

Inclusions in suspensions:

- Dye droplets suspended in different liquids
- Eu³⁺ organic complexes suspended in liquids and gases
- Quantum dots suspended in different backgrounds

The two models describe different experimental situations

Lorentz model

Real-cavity model

$$\tau_{\rm rad}^{\rm (diel)} = \frac{\tau_{\rm rad}^{\rm (vac)}}{n \left(\frac{3 n^2}{2 n^2 + 1}\right)^2}$$

Nanoparticles???

R. S. Meltzer, S. P. Feofilov,
B. Tissue, and H. B. Yuan,
"Dependence of fluorescence lifetimes of Y²O³:Eu³⁺ nanoparticles on the surrounding medium", *Phys. Rev. B* 60, R14012 (1999).

One would expect nanoparticles to be here

Sample preparation

Nd:YAG nanopowder (SEM picture)

- Nd³⁺:YAG nanoparticles (manufactured by *TAL Materials*).
- Nd concentration 0.9 at. %.
- Average particle size ~20 nm.
- The particles were suspended in different organic and inorganic liquids.
- Nd:YAG nanopowder volume fractions in suspensions were
 0.11%.

Liquid backgrounds

Metho	anol						
H _, O							
Ethan	ol						
Isopro	opanol						
1-Buto	anol						
Propy	lene carbor	nate					
1, 2-D	ichlorethan	9					
	oroethylene						
	ne						
Pyridi	ne						
Aque	ous immersio	on fluid					
CS							
1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7
			Refract	tive inde	Х		

Experimental setup

Data analysis

• Bi-exponential decay: τ_{long} : τ_{short} = 4 : 1

- The longer decay is the one that agrees with the theory.
- The shorter decay is due to the contribution from the surface ions.

Quantum yield

 Quantum yield tells what fraction of energy decays through the radiative channel.

$$\eta = \frac{A_{\rm rad}^{(\rm TAG)}}{A_{\rm rad}^{(\rm YAG)} + A_{\rm nonrad}}$$

 If quantum yield is close to unity, the fluorescence decay is purely radiative.

$$\eta \approx 1$$
 \longrightarrow $\frac{1}{\tau_{\text{measured}}} \approx \frac{1}{\tau_{\text{rad}}}$

• If quantum yield is less than unity, non-radiative transitions affect the dynamics of the fluorescence decay.

Quantum yield in Nd:YAG

Theoretical calculations: $\eta \approx 0.92$

W. F. Krupke, IEEE J. Quantum Electron. 7, 153 (1971).

Experimental measurements:

 $0.47 \le \eta \le 0.99$

- T. S. Lomheim and L. G. DeShazer, J. Opt. Soc. Am. 68, 1575 (1978).
- C. J. Kennedy and J. D. Barry, Appl. Phys. Lett. 31, 91 (1977).
- T. Kushida and J. E. Geusic, Phys. Rev. Lett. 21, 1172 (1968).

Radiative decay time as a function of the refractive index ($\eta \approx 1$)

Data Fit in the Assumption of $\eta \approx 1$

- Experimental data were fitted to different localfield models.
- Both the no-local-fieldeffects and real-cavity models describe the experimental results (with the bias towards the nolocal-field-effects model.)

Radiative decay time as a function of the refractive index ($\eta \approx 0.47$)

Data Fit in the Assumption of $\eta \approx 0.47$

- Real-cavity model yields the best least-square fit.
- Lorentz model can be ruled out.
- No-local-field-effects
 model lies pretty close to
 the experimental points.

Conclusions

- Radiative lifetimes of Nd:YAG nanoparticles suspensions in different liquid backgrounds were measured.
- A two-exponential decay dynamics was observed with the slower exponent corresponding to the theory.
- Real-cavity model gives the best least-square fit to the experimental points (in the assumption that the quantum yield of the Nd:YAG nanopowder is 47%).

Many thanks to:

Prof. Peter Milonni, Dr. Svetlana
 Lukishova, and Dr. Sergei Volkov for
 valuable discussions

 All the students of our research group for their feedback and help.