Some Remarks

Robert W. Boyd M. Parker Givens Professor of Optics The Institute of Optics University of Rochester

Presented at the Givens Chair Celebration, April 8, 2002.

Parker,
I greatly regret that personal circumstances have prevented me from attending tonight's affair in your honor. I hope that some of my thoughts, summarized here, may be conveyed to you by surrogate.

My association with you over the years has been characterized as one of continuous learning. Its been almost 40 years since you taught me what a curl was and how to recognize a field possessing curl properties. Some of your remarkable demonstrations of apparent paradoxes in interferometry led me to further investigate the subject of coherence in some depth. I learned from you the value of reducing a complex observation to a linked sequence of simple concepts and to set this as an analytic goal in my own work.

I also learned from you that peace and serenity might be achieved through close contact with and careful observation of other animal forms. I began to learn the equanimity that derives from accepting and living life on life's terms.

Parker, I am most proud to call you a true friend and I am very glad to see this special honor and recognition bestowed upon you this evening. I hope to extend these thoughts to you directly in the very near future.

Most Sincerely
 Jim Forsyth

Renee Fleming

Talbot's bands

M. Parker Givens

Institute of Optics, University of Rochester, Rochester, New York 14627
(Received 21 February 1992; accepted 9 December 1992)
This classic experiment has been largely ignored by modern text book authors. It is worth reviewing for historical reasons and also because it provides a simple yet striking example of the role of group velocity in interferometry.

Intultive explanation of the phase anomaly of focused Ilght beams

Robert W. Boyd
Institute of Optics, University of Rochester, Rochester, New York 14627
(Received 25 August 1979)

An intuitive argument is presented for the phase anomaly, that is, the 180° phase shift of a light wave in passing through a focus. The treatment is based on the geometrical properties of Gaussian light beams, and suggests a new viewpoint for understanding the origin of the phase shift. Generalizing the argument by including higher-order modes of the light field allows the case of a spherical wave to be treated.

(a)

WHIS WAY SIDE SHRINE MARKS NHE PLACE \therefore WHERE ON SEPTEMBER 14.1279 TWO YOUAG SOLDIERS OF CHE REVOUULION LHEUTEA ANT THOMA S BOYD AND SERCEANI MLCI A IL PARKER ME1 DEGAH YAD AUN MEHD MN CHE GINE OF DUML ABHER LHGERHG TORTURE MALE MARKED WUMH MHEDR BLOOD Whe WESTERN HMUTLA NHE STATE OF NEW XOK KO DHE GREAI STRUGGLE EOR A MBRICAMEREBDOM: -10

Where is Prof. Emil Wolf?

Intrigue of optical physics

Why Interest in Quantum and NLO Imaging?

Rochester is the self-designated:
"imaging capital of the world."

Why Interest in Quantum and NLO Imaging?

Rochester is the self-designated:

> "imaging capital of the world."

Dr. Nicholas George,
Wilson Professor of Electronic Imaging

Why Interest in Quantum and NLO Imaging?

Rochester is the self-designated:
"imaging capital of the world."
(Imogene?)

Feynman Diagrams

$\left(a_{1}\right)$

$\left(c_{1}\right)$

$\left(a_{2}\right)$

$\left(c_{2}\right)$

$\left(b_{1}\right)$

$\left(d_{1}\right)$

$\left(b_{2}\right)$

$\left(\mathrm{d}_{2}\right)$

Mark Kramer in Albuquerque

Hyderabad

Pisa

Kurt Oughstun and Paul Narum in Lillehammer

SUSSP, 1995
 St. Andrews

NLO Materials

Val Thorens 1996

George Fischer

NLO of Polymers

Cancun, Mexico

NOMA,

Cetraro,Italy
1997

Krakow, Poland

FRISNO 1998

Thank you!

THE END

