Entangled Light Sources for Quantum Imaging

Robert W. Boyd, Kam Wai Chan, Anand Kumar Jha, Malcolm N. O'Sullivan Hale, and Heedeuk Shin

The Institute of Optics, University of Rochester, Rochester, NY

Presented at SPIE, August 26 ${ }^{\text {th }}, 2007$

Outline

1. Overview of Quantum Imaging
2. Temporal Coherence in two-photon interference effects

Modification of Quantum States upon Propagation

- Effects of free space propagation on the spatial correlations between photons?
- Effects of turbulence on the spatial correlations between photons?

$$
\psi\left(x_{s}, x_{i}\right) \rightarrow N \exp \left[-\frac{B}{2}\left(x_{s}-x_{i}\right)^{2}\right] \exp \left[-\frac{A}{2}\left(x_{s}+x_{i}\right)^{2}\right]
$$

A and B are
complex quantities

Law \& Eberly, PRL 92, 127903 (2004)

Effects of free space propagation

Federov Ratio[1,2]:

$$
R_{q}=\frac{\Delta x_{i}}{\Delta x_{i}^{c o n d}}
$$

[1] Fedorov et al., PRA 69, 052117 (2004). [2] Chan and Eberly, quant-ph/0404093.

Entanglement Migration

$$
\left|\psi\left(x_{s}, x_{i}\right)\right|^{2}
$$

$$
\left|\psi\left(x_{s}, x_{i}\right)\right|^{2}=f\left(x_{s}\right) g\left(x_{i}\right)
$$

$$
\left|\psi\left(x_{s},-x_{i}\right)\right|^{2}
$$

$$
\psi\left(x_{s}, x_{i}\right)=\sqrt{f\left(x_{s}\right) g\left(x_{i}\right)} e^{i \phi\left(x_{s}, x_{i}\right)}
$$

Experiment to detect phase entanglement

Effects of Turbulence

Turbulence medium:
$\boxed{\square}$ heat gun
(easy to implement)
ㅁ Kolmogorov phase screen

Temporal coherence in two-photon interference effects

Parametric Downconversion

Coherence length of pump laser: $l_{\text {coh }}^{p} \sim 10 \mathrm{~cm}$.
Coherence length of signal/idler field: $l_{\text {coh }} \sim \mathrm{c} / \Delta \omega \sim 100 \mu \mathrm{~m}$.

Two-Photon Interference

- HOM effect

C. K. Hong et al., PRL 59, 2044 (1987)

- Bell Inequality for position and time
J. D. Franson, PRL 62, 2205 (1989)

- Frustrated two-photon Creation
T. J. Herzog et al., PRL 72, 629 (1994)

Single-Photon Interference: "A photon interferes with itself" - Dirac

(unfolded paths)
D $D_{\text {A }}$

Probability amplitudes for alternatives 1 and 2 add to produce one-photon interference

$$
R \propto 1+\gamma(\Delta l) \cos \left(k_{0} \Delta l\right)
$$

Necessary condition
for one-photon interference:

$$
\Delta \boldsymbol{I}<l_{c o h}^{p}
$$

What about two-photon interference?

Probability amplitudes for alternatives 1 and 2 add to produce two-photon interference

Two-Photon Path Diagram

$\Delta L \equiv l_{1}-l_{2}=\left(\frac{l_{s 1}+l_{i 1}}{2}+l_{p 1}\right)-\left(\frac{l_{s 2}+l_{i 2}}{2}+l_{p 2}\right) \quad$ Biphoton path-length difference
$\Delta L^{\prime} \equiv l_{1}^{\prime}-l_{2}^{\prime}=\left(l_{s 1}-l_{i 1}\right)-\left(l_{s 2}-l_{i 2}\right) \quad$ Biphoton path-length asymmetry difference

Two-Photon Path Diagram

$$
R_{\mathrm{AB}} \propto 1-\gamma^{\prime}\left(\Delta L^{\prime}\right) \gamma(\Delta L) \cos \left(k_{0} \Delta L\right)
$$

$$
\gamma(\Delta L)=\exp \left[-\frac{1}{2}\left(\frac{\Delta L}{l_{c o h}^{p}}\right)^{2}\right]
$$

Necessary conditions for

$$
\gamma^{\prime}\left(\Delta L^{\prime}\right)=\exp \left[-\frac{1}{2}\left(\frac{\Delta L^{\prime}}{l_{\text {coh }}}\right)^{2}\right]
$$ two-photon interference:

$$
\begin{aligned}
& \Delta L<l_{c o h}^{p} \\
& \Delta L^{\prime}<l_{c o h}
\end{aligned}
$$

Two-Photon Interference (Two special cases)

$$
R_{\mathrm{AB}} \propto 1-\gamma^{\prime}\left(\Delta L^{\prime}\right) \gamma(\Delta L) \cos \left(k_{0} \Delta L\right)
$$

Case I: $\Delta L^{\prime}=0$

$$
R_{\mathrm{AB}} \propto 1-\gamma(\Delta L) \cos \left(k_{0} \Delta L\right)
$$

- ΔL plays the same role in two-photon interference as ΔI does in one-photon interference

Case II : $\Delta L=0$

$$
R_{\mathrm{AB}} \propto 1-\gamma^{\prime}\left(\Delta L^{\prime}\right)
$$

- ΔL^{\prime} has no one-photon analog
- The curve represents how coherence is lost due to an increase in the biphoton path-length asymmetry difference ΔL,

Two-Photon Interference (Case I: $\Delta L^{\prime}=0$)

$$
\begin{aligned}
& \boldsymbol{\Delta L}=\mathbf{2 x} ; \quad \boldsymbol{\Delta} L^{\prime}=\mathbf{0} \\
& R_{\mathrm{AB}} \propto 1-\gamma(2 x) \cos \left(k_{0} 2 x\right)
\end{aligned}
$$

Two-Photon Interference (Case II: $\Delta L=0$)

Experimental Setup

One-photon effects in two-photon experiments

- Frustrated two-photon Creation
T. J. Herzog et al., PRL 72, 629 (1994)

One-photon interference profile is the sur observed at a detection point

$$
R_{\mathrm{X}}=\sum_{i} R_{\mathrm{XY}_{i}}
$$

$R_{\mathrm{X}}=$ single detector count rate
$R_{\mathrm{XY}_{i}}=$ coincidence count rate

$$
R_{\mathrm{A}}=R_{\mathrm{B}}=R_{\mathrm{AB}}
$$

Conclusions

One-photon interference

- A photon interferes only with itself
- Condition for coherence:

$$
\begin{array}{ll}
\text { (i) } \Delta l<l_{c o h}^{p} & \text { (i) } \Delta L<l_{c o h}^{p} \\
\text { (ii) } \Delta L^{\prime}<l_{c o h}
\end{array}
$$

One-photon effect in two-photon experiments

- Interference profile is the sum of two-photon interference profiles observed at a detection point.

Acknowledgements

http://www.optics.rochester.edu/~boyd

- ARO MURI and AFOSR STTR

