Exploring Energy-Time Entanglement Using Geometric Phase

Anand Kumar Jha, Mehul Malik, Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, New York, 14627 USA

Background: Geometric Phase

- Geometric Phase (Berry's Phase)

M.V. Berry, Proc. R. Soc. A **392**, 45 (1984) J. Anandan, Nature **360**, 307 (1992)

- Pancharatnam's Phase

S. Pancharatnam, Proc. Indian Acad. Sci. A **44**, 247 (1956) R. Bhandari, Phys. Rep. **280**, 1 (1997)

- Connection

M.V. Berry, J. Mod. Opt. **34**, 1401 (1987) Ramaseshan and Nityananda, Curr. Sci. **55**, 1225 (1986)

- Example:

Tomita and Chiao, PRL **57**, 937 (1986) Bhandari and Samuel, PRL **60**, 1211 (1988) Chyba, Wang, Mandel, and Simon, Opt. Lett. **13**, 562 (1988)

acquired by a system in an eigenstate when transported around a closed circuit by varying some parameters in its Hamiltonian

acquired by a light field when its state of polarization is taken through a closed circuit on the Poincare sphere

Pancharatnam's phase is the geometric phase in polarization optics.

Background: Energy-Time Entanglement

$$\omega_p = \omega_s + \omega_i$$

Energy conservation

$$\begin{aligned} |\psi\rangle &= \int d\omega \phi(\omega) |\omega\rangle_s |\omega_p - \omega\rangle_i \\ |\psi\rangle &= \int dt f(t) |t\rangle_s |t\rangle_i \end{aligned} \right\} \quad \begin{array}{l} \textbf{Energy-}\\ \textbf{Entangle} \end{aligned}$$

Time ement

- Bell inequality for Energy and Time

Franson, PRL 62, 2205 (1989)

$$|\psi\rangle = \frac{1}{\sqrt{2}}[|l\rangle_s|l\rangle_i + |s\rangle_s|s\rangle_i]$$
 State

$$R_{\rm AB} = C[1 + \cos(\phi_s + \phi_i)]$$

Coincidence count rate

Violation of CHSH Bell inequality (as entanglement witness)

Geometric phase based violation

State:

$$|\psi\rangle = \frac{1}{\sqrt{2}} [|l\rangle_s |l\rangle_i + |s\rangle_s |s\rangle_i]$$

Coincidence count rate: $R_{AB} = C\{1 - \cos[k_0(x_s + x_i) + 2\beta_s + 2\beta_i]\}$

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Geometric phase based violation

 $V = 77\% \ (> 70.7\%)$ $S = 2\sqrt{2}V$ $= 2.18 \pm 0.04 \ (> 2.0)$ Violation by 5 standard deviations

Jha, O'Sullivan, Chan, and Boyd, PRA 77, 021801(R) (2008)

Jha, Malik, and Boyd, PRL 101, 180405 (2008)

- Energy-Time Entanglement can be explored using geometric phase

- Potential benefits for quantum information science
 - Geometric phase is non-dispersive (wavelength independent)
 - Ease in introducing small phase shifts

Acknowledgments

- MURI grant, The US Army Research Office
- STTR grant, The US Air Force Office

