Non-linear optics of metals at the interband absorption edge

Nick N. Lepeshkin Giovanni Piredda Aaron Schweinsberg Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, NY 14627, USA

Introduction

 $C^{(3)}$ - NLO properties of noble metals have been studied in:

- -Nanoparticles -Percolation films -Thin films
 - **Results:**

Metals = losses!

Interaction length L ~ skin depth

 $\chi^{(3)}\,$ - mostly imaginary

Nonlinear response localized at the IB absorption edge

Artificial composite materials

Features:

Reduced loss (linear properties studied by Bloemer and Scalora [1]) Enhanced nonlinear response (theory by Bennink et al. [2]) Shifted peak of nonlinear response Imaginary $\chi^{(3)} \rightarrow$ nonlinear phase shift Increased damage threshold

[1] M. Bloemer and M. Scalora, Appl. Phys. Lett. 72, 1676 (1998)
[2] R. S. Bennink, Y. Yoon, R. W. Boyd, J. E. Sipe, Opt. Lett. 24, 1416, (1999)

Loss mechanisms in metals

λ, nm

Handbook of Optical Constants of Solid, edited by E. D. Palik (Academic, New York, 1991)

λ, nm

"Fermi smearing"

 $\Delta T \rightarrow \Delta \boldsymbol{e}(E_{IB}) \rightarrow$ change in optical properties

Near interband edge, "Fermi smearing" is dominant nonlinear process

G. L. Eesley, Phys. Rev. B33, 2144 (1986) H. E. Elsayed-Ali et al. Phys. Rev. Lett. 58, 1212 (1987)

Reflection/Transmission Z-scan

Cubic susceptibility of pure Cu

Nonlinear response of PBG

Strong nonlinear features @ 650 nm!

Nonlinear phase shift in PBG

λ, nm

Conclusions

- Stable, artificial, solid-state NLO material
- Enhanced transmission (10X)
- Enhanced nonlinear response (20X) over extended spectral range (550-650 nm)

