Enhancing the Spectral Sensitivity and Resolution of Interferometers Using Slow-Light Media

Zhimin Shi¹, Robert W. Boyd¹, Daniel J. Gauthier², and C. C. Dudley³

¹ The Institute of Optics, University of Rochester, Rochester, NY 14627 USA URL: http://www.optics.rochester.edu/~boyd

²Department of Physics and The Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina, 27708 USA

³was at Naval Research Laboratory, Remote Sensing Division, Code 7211, Washington, DC 20375 USA

Introduction to Slow Light

Pulse Propagation in a slow-light medium

Introduction to Slow Light

May 8, 2007

Application in Optical Communications

All-optical buffer / delay line

Slow-Light Interferometry

A slow-light medium has other applications

$$T(\omega) = \frac{1}{2} \left(1 + \cos \Delta \phi \right) = \frac{1}{2} + \frac{1}{2} \cos \frac{L\omega n(\omega)}{c}$$

$$\frac{d\Delta\phi}{d\omega} = \frac{L}{c}\left(n + \omega\frac{dn}{d\omega}\right) = \frac{Ln_g}{c}$$

May 8, 2007

Spectral sensitivity

- Transmission varies as wavelength changes
- Spectral Resolution can be enhanced n_g times

7

Multi-Beam Interferometers

Spectral Performance

May 8, 2007

Experiment

- Slow-light medium: CdS_{0.75}Se_{0.25}
 - Absorption band edge:
 2.15 eV (577 nm)
 - L₀~0.5 mm thick, c-cut, single crystal
- Laser: Rhodamine 6G Dye laser
 - Range: 585 605 nm

May 8, 2007

Observation of Fringes Movement

Calculation of Spectral Sensitivity

Measure the movement rate of fringes at different wavelengths

May 8, 2007

Experimental Results

• Spectral sensitivity $S = \frac{1}{\Lambda} \frac{dy_m}{d\lambda} = \frac{2L_0 n_g}{\lambda^2}$

Shi et al., Optics Lett. 32, p.915-917 (2007)

Summary

- The sensitivity and resolution of spectroscopic interferometers are proportional to the group index n_a of the media in its optical paths.
- The spectral performance can be greatly enhanced by introducing a slow-light medium into it. In our proof-of-principle experiment, $n_g = 3.5$, but n_g up to 10^7 is possible.

14

Acknowledgement

- Dr. Gary W. Wicks and Renee Pedrazzani
- Research Group of Nonlinear Optics at Univ. of Rochester.

Funding Agencies

Thank you for your attention!

CLEO/QELS 07, Baltimore, MD

May 8, 2007