Transient stimulated Brillouin scattering dynamics in polarizationmaintaining optical fiber

Matthew Bigelow Mark Skeldon Svetlana Lukishova Robert Boyd

Acknowlegments: Laboratory for Laser Energetics

Stimulated Brillouin Scattering

Short optical pulses have a higher power threshold.

SBS Generation From Noise

• Coupled Wave Equations for SBS.

 $A_1 \longrightarrow \text{Pump Field}$

 $A_2 \longrightarrow$ Stokes Field

 $\rho \longrightarrow$ Density Fluctuations

 $f \longrightarrow$ Langevin Force Driving Term

• Langevin noise source initiates SBS¹.

$$\langle f(z,t) \rangle = 0$$

$$\langle f(z,t)f^*(z',t') \rangle = Q\delta(z-z')\delta(t-t')$$

Strength of Flucutations:

$$Q = \frac{2kT\rho_0\Gamma_B}{v^2A}$$

• We solved these equations numerically near the threshold for SBS.

[1] R. W. Boyd, et al, Phys. Rev. A, **42**, 5514 (1990).

Experimental Setup

Transmitted Pulse

Theoretically Modeled SBS Pulse

Experimental SBS Pulse

Conclusions

Polarization-maintaining fiber is useful in studying transient SBS in fibers since there is no decrease in the threshold power from depolarization effects.

In a long fiber, SBS is generated through out the length of the fiber.

A Langavin noise source model accurately explains the reflected SBS signal.

The pump pulse is narrowed on transmission through the fiber as a result of pump depletion.

• Well above the threshold power for SBS, the reflected pulse is narrower than the input pulse (SBS pulse compression).

