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In quantum information, quantum systems and their properties offer unprecedented opportunities. Being able
to harness additional degrees of freedom adds power and flexibility to quantum algorithms and protocols. In this
work, we demonstrate that the radial transverse mode of a single photon constitutes one such degree of freedom.
We do so by showing that we can tune the two-photon interference, a quintessential quantum effect and the
basic constituent of many quantum protocols, by manipulating its radial transverse modal profiles. Our work,
in addition to allowing for greater versatility of existing protocols and significantly increasing the information
channel capacity, can inspire novel quantum information tasks.
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I. INTRODUCTION

Implementing quantum protocols and algorithms in high-
dimensional spaces requires engineering the interaction of
several particles [1]. A possible alternative, proposed in
[2], is to exploit several degrees of freedom (DOF) of a
single particle, instead. An example of this scheme takes
place in quantum optics when multiple properties of a single
photon are jointly addressed. In particular, in addition to
polarization and energy, the transverse profile of a single
photon supplies two unbounded Hilbert spaces [3], which in
polar coordinates are labeled by discrete radial and orbital
angular momentum (OAM) indices [4,5]. OAM has received
immense interest, classically for its mechanical features [6]
and in quantum information, where multidimensional Hilbert
spaces play a crucial role [7]. In fact, OAM itself provides an
unbounded Hilbert space, which can be used for implementing
qudit states (the units of quantum information) [8]. In this
way, encryption and decryption of information in a higher
dimensional Hilbert space can be achieved with a lower
number of photons, thus increasing the information density
[9]. Moreover, OAM is robust against imperfections and noise
during generation, detection, and transmission processes [10].
Combining polarization and OAM of photons, i.e., working
with either polarization-OAM hybrid or hyperentangled states,
has led to novel quantum communication schemes [11–13]. In
a similar way, exploiting an additional, independent DOF (such
as the radial mode) allows one to encode more qudit states in
an individual photon. This independent infinite-dimensional
Hilbert space might be combined with the others to further
increase the capacity of a communication channel, the security
of quantum key distribution protocols, and the processing
speed in quantum algorithms.

Some of the properties of physical systems appear only at
the classical level. For example, while one can use the optical
phase to distinguish large enough coherent states, one cannot
use it to differentiate single-photon states. In the same spirit,
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we aim at showing that radial modes can be successfully used
to label distinct single-photon quantum states. This can be
assessed in the quintessentially quantum context of Hong-Ou-
Mandel (HOM) interference, where any property that can help
distinguish the photons leads to a positive contribution to the
probability of the photons leaving from different ports. HOM
interference has been shown for DOF such as wavelength
[14], polarization [15], Hermite-Gauss transverse modes [16],
and OAM [17–19]. Consequently, several quantum gates and
algorithms, e.g., the C-NOT gate and Shor’s algorithm, and
measuring parametric down-conversion spectra were proposed
or demonstrated with some of those degrees of freedom
[20,21]. Moreover, correlations in the radial mode of entangled
photon pairs generated in down-conversion [22] have been
explored in [23], raising the interest in the use of this DOF.
The quantum nature of radial modes and OAM is quite
different from that of the Cartesian modes, i.e., Hermite-Gauss
modes [16], although both describe transverse modes of optical
fields. In this article, we employed HOM interference to show
experimentally that the radial DOF of single photons provides
an additional unbounded discrete Hilbert space.

II. RADIAL INDEX OF LAGUERRE-GAUSS MODES

The transverse structure of any paraxial optical field,
neglecting its vectorial characteristic (i.e., polarization), can
be decomposed into the Laguerre-Gauss basis, whose eigen-
states form a complete basis of transverse spatial modes in
cylindrical coordinates. Laguerre-Gauss modes are labeled by
two independent parameters: � and p, which correspond to
the azimuthal and radial quantum numbers, respectively, and
can be compactly referred to as LG�

p [4]. As radial modes
with the same value of � are mutually orthogonal, and as there
is in principle an infinite number of them, the corresponding
Hilbert space is unbounded, but unlike OAM, the symmetry
group associated with the radial DOF of an optical field is a
noncompact SU(1,1) Lie group [5]. It has been theoretically
proven and experimentally verified that considering the radial
DOF of an entangled photon pair generated in nonlinear
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FIG. 1. (Color online) (a) Experimental setup for generating entangled photon pairs: The photon pair generated via spontaneous parametric
down-conversion is made indistinguishable in all internal degrees of freedom by being coupled to single-mode optical fibers (SMOF), where
only the Gaussian transverse mode is selected. They are then sent to the main apparatus, b, in order to demonstrate the HOM interference.
(b) Experimental setup to test the Hong-Ou-Mandel interference: A quarter-wave (QWP) and half-wave (HWP) plates are used to compensate
and rotate the polarization state of both signal and idler photons to horizontal (suitable to obtain a maximum efficiency at the spatial light
modulators). Appropriate kinoforms are displayed on both spatial light modulators, SLM–A and SLM–B, to manipulate the radial DOF of the
two photons and to render them completely indistinguishable, partially distinguishable or completely distinguishable. The insets near the SLMs
show two possible types of holographic kinoforms. The two photons interfere on a 50:50 symmetric nonpolarizing beam splitter (NPBS). Then,
they are collected by low-mode optical fibers (LMOF) coupled to single-photon counting modules (DA and DB ), and detected in coincidence.
In order to check the HOM coalescence enhancement, an additional NPBS is inserted in arm–B (blue dashed area), and the coincidence counts
are read between detector DB and D′

B .

down-conversion greatly increases the entanglement strength,
and leads to an OAM/p-number hyperentangled state [23,24].
The difficulties associated with the study of radial modes
include: (i) The chosen basis is beam-waist dependent; an
eigenstate for a specific beam waist turns into a superposition
of p modes for any other beam waist. (ii) The accurate
generation of a specific LG�

p is challenging because it requires
intensity masking with a phase-only hologram.

Hereafter, we assume only the radial profile of the optical
beam as relevant, and that the other quantum numbers are
identical. In particular, we take � = 0 in the rest of the paper.
Therefore, the optical field modes are labeled only by the
radial number p, i.e., |ψ〉 = ∑+∞

p=0 cp|p〉, where |p〉 stands
for a radial eigenmode of radial number p. The expansion
coefficients cp are normalized to one, i.e.,

∑∞
p=0 |cp|2 = 1.

Since Laguerre-Gauss modes are mutually orthogonal, we
have 〈p|p′〉 = δp,p′ .

III. EXPERIMENTAL RESULTS

In our experiment, we prepared two photons, called signal
and idler, in a down-conversion process. A frequency-tripled
quasi-cw mode-locked Nd-YAG laser (repetition rate of
100 MHz, and average output power of 150 mW at 355 nm)
pumped a 3-mm-thick nonlinear β-barium borate crystal
cut for type-I phase matching in a near-collinear regime to
generate identical photon pairs with degenerate frequency of
λ = 710 nm. The generated photon pairs were coupled into
two identical single-mode optical fibers where the TEM00

mode was selected, i.e., the transverse spatial mode of each
photon was filtered by coupling into a single-mode optical

fiber. Then, they were sent to the main apparatus in order to test
the HOM coalescence. An overall quantum efficiency of 20%
with a coincidence rate of 37 kHz was obtained by optimal
splitting the photon pairs by a knife-edge (KE) prism; see
Fig. 1(a). The polarization shift of signal and idler induced by
the fiber propagation was compensated for by a combination
of quarter-wave and half-wave plates, also used to set the
polarization to horizontal in order to obtain the maximum
efficiency of the spatial light modulators. At this stage the
two photons are not anymore entangled, rather they are only
synchronized in time. The radial modes of signal and idler,
initially a Gaussian mode with waist of w0 = 954 μm, were
controlled by two computer-generated holograms of 1920 ×
1080 pixels displayed on two HOLOEYE PLUTO spatial light
modulators (SLMs). The desired modes generated at the first
order of diffraction of blazed kinoforms shown on the SLMs
were then sent into a 50:50 symmetric nonpolarizing beam
splitter (NPBS). The output beams were, then, coupled to
low-mode optical fibers (LMOFs) with a core of 10 μm after
being spectrally filtered by an interference filter (IF) with a
bandwidth �λ = 10 nm. During a fully automatic process,
the photons were detected by two silicon module avalanche
photodiodes, and finally a National Instrument data acquisition
card recorded photon counts and coincidences between the
signal and idler detectors with a detection window of 25 ns.
A “trombone,” an optical delayer, with a step size of 1μm

was used to synchronize the arrival time of the photons on the
NPBS.

We perform two tests of indistinguishability: measurement
of the visibility of the standard HOM interference and what we
termed “coalescence enhancement” (CE). CE is an additional
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test that is performed to verify the interference effect. While
two perfectly distinguishable photons do not coalesce at a
balanced NPBS and one-fourth of the times leave the NPBS
together from a specific port, in a configuration including the
second beam splitter two indistinguishable photons leave the
NPBS from the same port together half of the times. Therefore,
the coincidence counts recorded by DB and DB ′ after the
photons pass through the second NPBS will double; see
Fig. 1(b). In general, the enhancement C satisfies 1 � C � 2
and depends on the distinguishability of the photons. As a
first step, two LMOFs were replaced with single-mode fibers
and a standard HOM dip between two Gaussian photons was
observed with a visibility of 0.987. Instead, due to a nonperfect
post-selection by LMOFs, a visibility of 0.725 was achieved
with the same setup. The visibility value was improved to 0.80
by setting up apertures at the far field of LMOFs, the SLMs
position, to emphasise that the indistinguishability can be
recovered by a fiber-independent spatial filtering. Nonetheless,
the CE was very close to the theoretical value, since it provides
an indistinguishability test that is less affected by experimental
imperfections. Then an SLM manipulates the radial DOF such
that signal and idler become effectively indistinguishable in
all degrees of freedom except for the radial one, which we
can adjust to be either (i) identical, (ii) partially different or
(iii) entirely different; see Fig. 1 for details. As anticipated,
the radial states of each of the two photons, in general,
are |ψs〉 = ∑+∞

p=0 cs
p|p〉 and |ψi〉 = ∑+∞

p=0 ci
p|p〉, respectively,

where cs
p and ci

p determine the distinguishability of the
photons. The two states are indistinguishable if the overlap
of the two satisfies 〈ψs |ψi〉 = 1, and conversely are entirely
distinguishable if 〈ψs |ψi〉 = 0. A partial distinguishability is
expected for a partial overlap between the two states. For
instance, a state with only the p = 0 component (a Gaussian
state) is orthogonal to any superposition that has no p = 0
component. This special case will be demonstrated in our
experiment.

Generating a beam possessing specific radial momentum
quanta with efficient phase-only SLMs requires intensity
masking. The mask employs only a part of the SLM surface, so
that it diffracts the required beam into the first order. However,
the count rate decreases linearly with the extent of the surface
undergoing intensity masking, thus affecting the coincidence
count rate quadratically. In order to avoid such a technical
difficulty, in the first part of the experiment we introduced a
different type of holographic kinoform (phase-only computer
generated holograms), where the whole SLM surface was used.
Consequently, the coincidence rate was constant during all the
experimental tests. Moreover, it allowed us to demonstrate
the orthogonality among an infinite set of states in the radial
Hilbert space. Our kinoform is made of a blazed grating with
a centered disk of radius ρ0 and of π phase shift with respect
to the outer surface, as shown in the upper inset of Fig. 1(b).
Diffraction of a Gaussian beam from such a kinoform at the
first order is given by

E(ρ) =
√

2

π
e−ρ2

{−1 ρ < ρ0

+1 ρ > ρ0
, (1)

where
√

2/π is a normalization constant. The beam can be
expanded in the LG basis with fixed �, in this case � = 0:

E(ρ) = ∑+∞
p=0 cp(ρ0) LGp(ρ), where we omit the azimuthal

index. The LGp modes in the dimensionless coordinate at the
pupil are

LGp(ρ) =
√

2

π
e−ρ2

Lp(2ρ2), (2)

where Lp(.) are the Laguerre polynomials of order p. The
expansion coefficients, then, can be calculated by cp(ρ0) =
2π

∫ +∞
0 ρ dρ LG∗

qp(ρ)E(ρ) and are given by

cp(ρ0) = 4ρ2
0 1F1

(
p + 1,2,−2ρ2

0

) − δp,0, (3)

where 1F1 and δ are a hypergeometric and Kronecker delta
function, respectively.

The disk radius ρ0 can be adjusted such that the Gaussian
component of the diffracted beam is entirely suppressed,
which happens at ρ0 ≈ 0.588w0. We rendered the photon

FIG. 2. (Color online) (a) Experimental data of the Hong-Ou-
Mandel interference in the radial DOF (coincidence detection with
DA and DB ): The HOM dip indicates indistinguishability between the
two photons; the flat data (red) corresponds to two completely distin-
guishable radial states, while the other two curves (magenta and blue)
correspond to a pair of partially distinguishable and indistinguishable
radial states. The visibilities of the dips are V = 0.014 ± 0.027,
V = 0.465 ± 0.030, and V = 0.646 ± 0.026, respectively. The inset
shows that the radius of each holographic kinoform displayed on
the SLM-B which determined the value of the distinguishability.
(b) Experimental data of the Hong-Ou-Mandel coalescence enhance-
ment (coincidence detection with DB and DB ′ ); the enhancement
increases for indistinguishable photons in the radial DOF. The
enhancements due to coalescence are C = 1.113 ± 0.093, C =
1.590 ± 0.060, and C = 1.907 ± ,0.047, respectively. The error bars
correspond to one standard deviation and were calculated from a
Poisson distribution. Solid curves are the best theoretical Gaussian
fit. Note that the normalization factor for (a) and (b) are different.

013829-3



EBRAHIM KARIMI et al. PHYSICAL REVIEW A 89, 013829 (2014)

TABLE I. Theoretical value of expansion coefficients (c0),
expected theoretical, and experimental observed HOM coalescence
enhancements for various values of the circle radius ρ0.

ρ0 |c0|2 Theoretical C Experimental C

0.000 1.000 C = 2.00 C = 1.973 ± 0.051
0.353 0.310 C = 1.69 C = 1.590 ± 0.060
0.588 0.000 C = 1.00 C = 1.113 ± 0.093
1.414 0.928 C = 1.92 C = 1.907 ± 0.047

pairs completely distinguishable by displaying a normal
diffraction grating on SLM-A and a kinoform with a π

phase jump at radius ρ0 ≈ 0.588w0 on SLM-B, as shown in
Fig. 2(a) (red data points). In this situation, the photon pairs
do not interfere, and the coincidence counts are effectively
constant as a function of the trombone displacement, which
yields a visibility of the HOM dip of V = 0.014 ± 0.027.
Consequently, no CE [red points shown in Fig. 2(b)] was
observed between detectors DA and DB , placed after the first
beam splitter.

After having verified the ability of radial modes to effec-
tively label quantum states, we increased the distinguishability
of the photons by changing the radial position of the π

jump on SLM-B to ρ0 = 0.353w0 and ρ0 = 1.414w0, and
measured corresponding visibilities of V = 0.465 ± 0.030
and V = 0.646 ± 0.026, and CEs of C = 1.590 ± 0.060 and
C = 1.907 ± 0.047 (see Fig. 2 for more details).

In Table I we show the expected theoretical and observed
CEs and the first-order expansion coefficient c0 for different
values of circle radius.

We then observe the HOM interference between two
identical spatial modes with no Gaussian component. A
CE of C = 1.946 was observed, which shows an excellent
indistinguishability between two photons with identical su-
perpositions of p � 1 modes. This last test is performed
using a large portion of the Hilbert space of the radial DOF.
Imperfections in the system, such as aberrations in the SLMs,
alignment, and environmental issues prevented the minimum
of the coincidence dip to reach exactly the value of zero. These
effects are mostly noticeable by the necessary implementation
of LMOFs.

In order to ensure that the radial DOF provides an addi-
tional unbounded discrete Hilbert space in addition to OAM,
polarization, and wavelength, we examine the orthogonality
between mutual radial states ps and pi . The recently developed
intensity-masking technique is used to generate different radial
eigenstates within a very good approximation [25]. The fidelity
of generated state, however, is bounded by the pixel size,
effectively employed active area of SLM, and the so-called
SLM gamma function modulation. Nonetheless, an average
fidelity about 0.98% for complicated transverse states is
observed in prior work [26]. In this case, low-mode optical
fibers at the detection stage (DA and DB) are replaced with
200-μm core-size multimode optical fibers, since low-mode
optical fiber supports only few radial modes.

The experimentally observed visibility of the HOM dip
for different radial eigenstates of {|0〉, . . . |9〉} is shown
in Fig. 3. As seen in Fig. 3, two photons are perfectly

FIG. 3. (Color online) Experimental data of visibility of the
HOM interference for two different radial modes of ps (signal)
and pi (idler). The top right inset is a density plot of the three-
dimensional plot. This shows that the eigenstates of the radial mode
are mutually orthogonal; thus the associate Hilbert space is discrete
and unbounded. Decreasing in visibility for higher p eigenstates is
caused by truncation introduced by optics and a relatively small active
area of the SLMs.

distinguishable when they possess different radial eigenstates.
Due to experimental imperfection in which some of them
discussed above the visibility for indistinguishable photons
varies in the range of 32%–62%. Truncation, mainly intro-
duced by microscope objectives and aperture of optics, and
effective limited active area by SLMs are the main source
of this imperfections in which alters the radial states. Thus,
they reduce the visibility for higher values of p eigenstates.
However, the presented data are good enough to show that
the eigenstates of radial DOF are mutually orthogonal and
unbounded.

IV. CONCLUSIONS

We have shown that the radial degree of freedom of single
photons can be manipulated individually in a quantum regime
and that it effectively acts as an additional label that allows
us to adjust the distinguishability of two photons. This test
was performed using quantum two-photon interference, the
Hong-Ou-Mandel effect: We demonstrated that two photons
with identical radial states coalesce, which is a consequence
of their bosonic nature, and that they do not coalesce if their
states are labeled by different orthogonal radial modes. It is our
hope that the results and techniques presented here will inspire
the ideation of novel quantum protocols and algorithms using
the radial DOF in addition to the other degrees of freedom of
light [18,20].
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