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Summary. — The ability to manipulate light has allowed scientists to verify fun-
damental theories of physics and to develop a new generation of technologies that
use photons as a primary resource. Recent developments in quantum measurement
theory have offered new alternatives to approach some of the most remarkable prob-
lems in quantum physics. Consequently, the principles of quantum mechanics have
been exploited in the development of quantum technologies such as optical metrol-
ogy, quantum communication, and quantum information. In recent years, weak
measurements and two of its most remarkable variants: weak value amplification
and direct measurement, have been developed and are considered important re-
sources for quantum applications. In this paper, we discuss weak measurements and
some significant applications of weak values. We elaborate on how distinct forms of
weak values are used to observe and amplify small effects or to directly measure the
quantum wave function of photons, a crucial task for schemes for quantum commu-
nication and quantum information. We also review some of the most recent methods
for weak value amplification and direct measurement that our group has developed.
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1. – Introduction

Bayes’s theorem has played a fundamental role in classical and quantum measurement
theory. As in any branch of science, the measurement process is of fundamental impor-
tance in quantum physics. However due to the nature of the formulation of quantum
mechanics, different forms of measurements, or exotic implementations of statistics, have
led to the observation of counterintuitive physical effects [1]. Examples include superlu-
minal pulse propagation, the determination of the trajectory followed by a single photon
in a two-slit interferometer, amplification of observables, etc. [2-8]. In addition to the
fundamental character of these effects, recent work suggests that some of them could have
strong implications for technological applications, such as in quantum communication,
quantum information, and metrology [9-25].

In 1988 Aharonov, Albert and Vaidman introduced a generalized form of quantum
measurement known as weak measurement [2]. The original paper with the title “How
the result of a measurement of a component of the spin of a spin-1

2 particle can turn out
to be 100” created heated debates and motivated a new generation of experiments that
eventually verified the counterintuitive prediction [26,27,6,8,7,4]. In the first part of this
manuscript, we discuss some of the effects that give rise to the apparent “weird” features
that make weak measurements interesting and controversial, and then we describe our
recent experimental contributions to this field.

2. – Weak value amplification

In this introductory part we use the von Neumann model to explain weak measure-
ments. In this model, the total system is composed of two subsystems, one is the system
we wish to measure, described by the state |Ψs〉, typically called the probe. The other is
the pointer device |Ψd〉 that provides information about the measured system [1]. The
correlation between these subsystems arises when the observable of the system σ̂ is cou-
pled or entangled to the pointer, through its linear momentum p̂. This can be described
by the following interaction Hamiltonian:

Ĥint = gσ̂p̂,(1)

where g is a real quantity that acts as coupling constant. The initial state can be
described as the product of the state of the system or probe and the state of the pointer
device as |Ψi〉 = |Ψs〉 |Ψd〉. Further, the state |Ψs〉 can be expressed as

∑
n sn |Sn〉, in

terms of the eigenstates of the operator σ̂ as a consequence of the spectral theorem. After
the interaction of duration Δt, the subsystems are coupled in the following manner:

|Ψf 〉 = e−iĤintΔt |Ψi〉 =
∑

n

sn |Sn〉 |Ψd(x − χsn)〉 ,(2)

where χ equals gΔt. In obtaining this result we have recalled the fact that the momentum
p̂ is the generator of translations in x. The state |Ψf 〉 demonstrates that system and
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Fig. 1. – Schematic diagram of the experimental setup used to perform strong and weak mea-
surements. a) A birefringent crystal shifts the horizontal and vertical polarized components
of the input beam, which is diagonally polarized. The induced shift is larger than the beam
waist diameters of the emerging beams; this strong interaction thus allows the determination
of the polarization of the two beams, via strong or projective measurement. The measurement
process permits one to infer information about the strength of the interaction, in this case the
birefringence of the material. b) A weaker interaction between the input beam and the birefrin-
gent crystal produces a small displacement between the two emerging beams. In this case, the
beam displacement is much smaller than the waist diameter of the beams. Thus it is difficult
to determine the polarization of each beam. In this case, the post-selection process forces the
two beams to coherently interfere, producing another beam with a Gaussian profile. When the
position of the post-selection polarizer is almost orthogonal to the input polarization, the center
of the post-selected beam is shifted by an amount proportional to the small separation between
the two emerging beams multiplied by the weak-value amplification factor.

pointer have been coupled; this effect is sometimes referred to as entanglement [28, 29].
In addition, the position of the center of the pointer state has been shifted. If one were
to calculate the expectation value of the position operator 〈X̂〉 in the final state |Ψf 〉,
under ideal circumstances this will be equal to χ〈σ̂〉. This result shows that the position
of the pointer can be used to estimate the expectation value of the operator σ̂, which
explains the origin of the name of pointer. It is worth noticing that the strength of the
coupling constant has not been constrained. This form of measurement is known as strong
perturbative measurement [1, 2]. Typically, the probability distribution of the pointer is
assumed to be a Gaussian function; however, different pointers and their advantages
have been studied [30,31]. The random noise or error associated with a measurement or
read-out process is typically described by a Gaussian distribution. An example of strong
measurement is depicted in fig. 1a). Here, the transverse spatial position of a Gaussian
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beam acts as the pointer and its polarization as the probe. The beam of light with
diagonal polarization passes through a tilted birefringent crystal, which provides the
interaction Hamiltonian for measuring the operator σ̂. At the output of the crystal,
the position and polarization of the emerging beams are well defined due to the strong
interaction that occurred in the crystal, caused by its birefringence. In a typical (strong)
measurement, the separation between the horizontally and vertically polarized beams is
much larger than the sum of the beam waist sizes, making it easy to resolve the two beams
with minimal uncertainty in the measurement of the polarization state of each photon.

In weak measurements, the initial state of the system remains mostly intact, and
information is obtained by weakly disturbing the system. As a consequence, the uncer-
tainty in each single-photon measurement is large. However, the uncertainty is generally
overcome by averaging over a large number of events. The post-selection process makes
weak measurements interesting. For example, the outcome of a weak measurement, called
a weak value (WV), need not be an eigenvalue of the measurement operator [2, 4, 9]. In
addition, WVs can be complex or exceed the eigenvalue range of a strong or projective
measurement. The properties of WVs can be understood if we use the von Neumann
model. In this case, we assume that the perturbation or coupling χ is small. The state
after the weak perturbation can be written by expressing the interaction Hamiltonian as
a power series

|Ψf 〉 = e−iĤintΔt |Ψi〉 = |Ψs〉 |Ψd〉 − iχσ̂ |Ψs〉 p̂ |Ψd〉 + . . . .(3)

After the weak perturbation, a post-selection is applied to the system. In general, the
post-selection can be performed on any variable, such as polarization, linear momentum,
orbital angular momentum (OAM), etc. In fact, this flexibility has allowed scientists to
apply weak measurements to different scenarios and degrees of freedom [8,12,13,15-21].
Therefore, our post-selection is performed by applying the projective operator |Ps〉 〈Ps|
to the state |Ψf 〉, leading to the following state

|ΨF 〉 = |Ps〉 〈Ps| |Ψf 〉 = [〈Ps|Ψs〉 |Ψd〉 − iχ 〈Ps| σ̂ |Ψs〉 p̂ |Ψd〉 + . . . ] |Ps〉 .(4)

Due to the weakness of the interaction, this expression can be approximated to the first
order and then normalized to give

|ΨF 〉 ≈
(
|Ψd〉 − iχ

〈Ps| σ̂ |Ψs〉
〈Ps|Ψs〉

p̂ |Ψd〉
)
|Ps〉 .(5)

The post-selection process collapses the state of the probe, in this case |Ψs〉. In
addition, the post-selection reveals the weak value of the operator σ̂. The weak value is
defined as

σw =
〈Ps| σ̂ |Ψs〉
〈Ps|Ψs〉

,(6)
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and it is important to stress that this is a general definition that can be applied to any
operator defined for any degree of freedom or in any Hilbert space. Besides the collapse
of the state of the system |Ψs〉, the post-selection process also induces a shift in the state
of the pointer device |Ψd〉. Remarkably, this shift is proportional to the weak value and
to the small disturbance χ as described by

|ΨF 〉 = |Ψd(x − χσw)〉 |Ps〉 .(7)

The WV σw can take very large values when the states |Ps〉 and |Ψs〉 are almost orthog-
onal, as can be seen from eq. (6). Furthermore, when one of the coefficients of either of
the two states is complex, the weak value can be complex. Such unusual features have
generated a great amount of interest in weak measurements. A detailed review of this
field can be found in [9].

Under many practical circumstances, weak values and weak measurements can be
understood in terms of entirely classical arguments. Nonetheless, much of the recent
work on weak measurements employs the simple and mathematically elegant language
of quantum mechanics to describe these effects. The reason is that quantum mechanics
provides a simpler description and the results apply to a wider range of phenomena than
for the case of a classical description.

In 1991, Ritchie et al. performed the first realization of a weak value [8]. A simplified
version of their experimental setup is depicted in fig. 1b). Here, we assume a weak
interaction between the beam and the crystal. This interaction produces a weak coupling
of the spatial profile with the polarization degree of freedom, which means that the two
polarization components of the beam travel along different optical paths and become
transversely separated. In this weak-interaction regime, the two beams emerging from
the quartz plate are spatially separated by an amount that is much smaller than the beam
waist size. For example, if one were to determine the birefringence of the material by
measuring the actual position of the two beams, this will be an ineffective technique. The
variance of the pointer is large, and thus the measurement will not be precise. However,
the post-selection process makes this experiment interesting, since it allows discarding
results that do not provide useful information and keeping those that convey relevant
and conditioned information. As we will discuss, this exotic form of performing statistics
can be implemented in different forms. In Ritchie’s experiment the post-selection is
performed with a polarizer. When the position of the post-selection polarizer is almost
orthogonal to the polarization of the injected beam, the amount of transmitted light is
low. Nevertheless, because of the optical interference between the two emerging beams,
the spatial centroid of the post-selected beam is shifted by an amount proportional to
the product of the small separation between the two beams and the weak value. So, weak
values offer an alternative form of determining small quantities or weak effects.

The essence of Ritchie’s experiment is shown in fig. 2. We have simulated different
regimes for the experimental setup depicted in fig. 1b). We assume a beam with a
Gaussian intensity distribution and a beam waist of 55μm. The result of the constructive
interference between the two beams separated by 2.5 μm is shown in fig. 2a). In fig. 2b)
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Fig. 2. – Numerical simulations that illustrate three regimes of the experimental setup depicted
in fig. 1b). The transverse profile produced by constructive interference between two identical
Gaussian beams with a beam waist of 55 μm separated by 2.5 μm is shown in a). One of the
beams is horizontally polarized whereas the other is vertically polarized, the post-selection angle
of the polarizer is 45◦. b) The angle of the post-selection polarizer is set to 90◦ + ε with respect
to the polarization of the input beam, where ε equals 2.8◦, this is the weak measurement regime.
The shift in the pointer is proportional to the product of the weak value and the small separation
between the two interfering beams. c) In this case ε is 0◦ and the weak value is not defined.

the angle of the post-selection polarizer is set to 90◦ + ε with respect to the polarization
of the input beam, where ε equals 2.8◦; this is the weak measurement regime. The shift
in the state of the pointer is eight times larger than the separation of the beams emerging
from the crystal. This value can be increased by decreasing either ε or the separation
between the two beams; however, the amount of light passing through the post-selection
polarizer would then decrease. In fact, this is an important limitation in the protocols
for weak value amplification (WVA); stronger post-selections or larger amplifications
imply the loss of more photons through post selection. Furthermore, the weak value
is not defined for very small values of ε. Figure 2c) illustrates a situation where the
post-selection angle is orthogonal to the polarization of the input beam, that is, ε = 0◦.

In the work of Ritchie and co-workers, the measured weak value was real and this
was measured by observing the shift in the position of the pointer. Nonetheless, as we
have pointed out earlier, a weak value can be complex, and therefore one should be able
to measure both the real and imaginary part of the weak value. Several authors have
shown that the shift in the position and momentum of the pointer is proportional to the
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real and imaginary part of the weak value [32,33], respectively.
The expectation values of the position and momentum operator for the post-selected

state |ΨF 〉 described by eq. (7) can be calculated as

〈X̂〉F = χ�
(
〈Ps| σ̂ |Ψs〉
〈Ps|Ψs〉

)
,(8)

〈P̂ 〉F =
2χ

σ2
�

(
〈Ps| σ̂ |Ψs〉
〈Ps|Ψs〉

)
.(9)

These relations have motivated a wide variety of experiments during the last 10 years.
For example, weak measurements and weak value amplification have been widely used
to amplify or observe small effects in different variables. For instance, Hosten et al.
observed the Hall effect of light, Strübi et al. proposed a technique to measure small
time delays, Viza et al. measured velocities, Xu et al. estimated phase shifts, Dixon et al.
measured beam deflections, Salazar-Serrano et al. frequency shifts and Magaña-Loaiza et
al. angular shifts, etc. [16,18,13,34,17,20,19,21]. In addition, there are several proposals
that suggest that weak-value amplification can be used for metrology, although this is
still a topic under discussion [14,17,35,26,27].

3. – Direct measurement

In 2011, Lundeen et al. proposed a technique known as direct measurement of the
quantum wave function. This technique utilizes weak values to measure the wave func-
tion of a quantum particle in a direct fashion [4]. The simplicity of this technique and the
fact that it does not require a time-consuming post-processing makes it attractive. The
principles of quantum mechanics forbid the exact determination of the wave function of
a particle in a single measurement. However, direct measurement utilizes many measure-
ments on identically prepared systems to determine the weak values and subsequently
the quantum state.

Efficient characterization of a quantum state is a crucial part of a variety of ex-
periments in quantum optics. Recently, direct measurement has been utilized to re-
construct complicated wave functions and high-dimensional states defined on different
Hilbert spaces [24,22,25].

The main idea behind this technique is to perform a weak measurement of the position
followed it by a strong measurement of the momentum of the particle, in this case a
photon. The weak value then takes the following form:

πw =
〈p|x〉〈x|Ψs〉

〈p|Ψs〉
= eipx/h̄ Ψs(x)

Φ(p)
.(10)

As can be seen, the weak value takes a different form to the one obtained in protocols
for weak value amplification. Furthermore, if the post-selection is carried out at p = 0,
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Fig. 3. – Experimental apparatus used by Lundeen and co-workers to measure the spatial wave
function of a single photon [4]. A weak rotation of polarization, via HWP (WP1) is followed
by a strong measurement of the momentum. A series of polarization measurements allow the
reconstruction of the spatial quantum wave function.

the expression above can be simplified to

πw = kΨs(x),(11)

where k is equal to 1/Φ(0) which can be considered to be a normalization constant. This
remarkable result shows that this recipe produces a weak value that is directly related
to the transverse quantum wave function of the measured photons.

The experimental implementation of this method used the relatively simple apparatus
depicted in fig. 3. The complete technique comprises three stages. The first part can
be understood as a weak measurement in the position variable. This measurement is
performed by using a rectangular sliver of a half-wave plate (HWP), labeled it as WP1, to
weakly rotate the polarization of light at a specific position. A Fourier transforming lens
and a small pinhole allows one to perform the post-selection at p = 0 in the momentum
basis. The last part is the strong measurement process. Here a HWP or a quarter wave
plate (QWP), labeled as WP2, together with a polarizing beam splitter (PBS) permits
the measurement of the real or imaginary part of the WV, respectively.

The interaction Hamiltonian that describes the effect of the weak disturbance in the
position variable is Hint = ασ̂yπ̂, where α is a small polarization rotation angle, σ̂y is
one of the Pauli matrices defined as −i |H〉 〈V |+ i |V 〉 〈H| and π̂ is the position operator
|x〉 〈x|. After the post-selection at p = 0, the final state (which can be described as in
eq. (5)) takes the following form

|sf 〉 = |V 〉 +
iα

2
πwσ̂y |V 〉 .(12)

It is important to point out that the above state provides information about the wave
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function only at a specific position x. In order to retrieve the full wave function, one has
to repeat this measurement at various positions x. After the operator σ̂y is applied to
the polarization state, |sf 〉 takes the form

|sf 〉 = |V 〉 +
α

2
πw |H〉 .(13)

Since the pointer is the polarization degree of freedom, in order to reconstruct the
quantum wave function one has to fully characterize the polarization of the detected
photons. One way of doing this is by measuring the Pauli operators σ̂x and σ̂y in the
final state |sf 〉. Notably, measurement of 〈sf | σ̂x |sf 〉 provides information about the real
part of the weak value

〈sf | σ̂x |sf 〉 = 〈sf | (|H〉 〈V | + |V 〉 〈H|) |sf 〉(14)

= α�[πw].

The state above can be measured by using a HWP for WP2 and a PBS. In addition,
replacing the HWP with a QWP allows the measurement of the Pauli operator σ̂y, which
is proportional to the imaginary part of the weak value

〈sf | σ̂y |sf 〉 = 〈sf | (−i |H〉 〈V | + i |V 〉 〈H|) |sf 〉(15)

= −α�[πw].

Therefore the wave function can be reconstructed from the measurements of 〈sf | σ̂x |sf 〉
and 〈sf | σ̂y |sf 〉 as follows:

Ψs(x) =
1

kα
(〈sf | σ̂x |sf 〉 − i 〈sf | σ̂y |sf 〉).(16)

In the following section, we describe some experimental implementations that utilize
weak values for amplification of small effects and direct measurement of wave functions
in various Hilbert spaces.

4. – Experimental weak measurements

Our discussion starts with weak-value amplification in the azimuthal degree of free-
dom [21]. We then describe three implementations of direct measurement; compressive
direct measurement of the quantum wave function [25], direct measurement of a 27-
dimensional orbital angular momentum state [22] and the full characterization of polar-
ization states of light via direct measurement [24].
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Weak value amplification in angular position and OAM variables. – Besides the ex-
tensive work on the estimation of longitudinal displacements [36, 19, 14, 37, 38, 17], high-
sensitivity measurement of angular displacements has been a recent topic of interest.
Notably, light carrying orbital angular momentum has became the most popular resource
for this purpose. As identified by Allen et al. [39], an optical beam with azimuthal phase
dependence of the form ei�φ carry OAM; here, φ is the azimuthal angle and � is the OAM
value. These beams have been used for rotational control of microscopic systems and
exploration of effects such as the rotational Doppler shift [40], which has been recently
used for detecting spinning objects [41]. Recent efforts to increase the sensitivity in the
measurement of angular rotations involve the generation of large values of OAM [42],
quantum entanglement of high OAM values [43], and the use of N00N states in OAM
bases [44]. These protocols require complicated schemes to generate and measure pho-
tons in such exotic states. However, the ultimate realization of such methods could result
in significant improvements in optical metrology, remote sensing, biological imaging, and
navigation systems.

We describe WVA in the azimuthal degree of freedom and the processes that give rise
to these effects. The first observation of these WVs is interesting from the point of view
of fundamental physics and potential applications. For instance, the spin-orbit coupling
gives rise to an optical effect in which the perturbation of polarization induces a shift
in the angular position and OAM spectrum of the pointer. We demonstrate that the
real and the imaginary part of the WV for a polarization operator can be accessed by
measuring the angular position and its conjugate variable, of OAM. Using a new variation
of WVs based on spin-orbit coupling, we propose a scheme for the measurement of small
rotations. An amplification in the measurement of angular rotations that is as large
as 100 is demonstrated [21]. The simplicity of the scheme, and the lack of need for
exotic quantum states or extremely large OAM values, make this technique attractive
for applications in optical metrology and remote sensing.

The experimental setup is depicted in fig. 4. The polarization and spatial profile of
the beam are used as probe and pointer, respectively. The initial polarization state is
selected using a polarizer and a HWP, that are labeled as WP1; this state can be de-
scribed by the polarization qubit |Ψpr〉 = 1√

2
(|H〉+ |V 〉). The preparation of the spatial

mode [45] consists of the generation of an angular mode (ANG) f(φ) ∝ exp (−φ2/2ηφ
2),

which is a Gaussian angular slit of width ηφ. The beam is injected into a Sagnac in-
terferometer, where the horizontally and vertically polarized components of the beam
circulate in opposite directions. The dove prism (DP) is rotated by a small angle Δφ/4
with respect to the plane of the interferometer, which causes the two counter-propagating
beams to be rotated by an amount of ±Δφ/2 in opposite directions. The interferometer
couples the polarization, marked by the two counter-propagating beams, and the trans-
verse azimuthal degree of freedom. Two QWPs and a HWP, labeled as WP2, are used
to induce a geometric phase between the two circulating beams in the interferometer,
permitting the existence of complex WVs. The angle of the QWPs is set to π/4 and the
angle of the HWP defines the geometric phase. Finally, the post-selection is performed
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Fig. 4. – Experimental setup. A HeNe laser working at 632.8 nm is coupled into a single-mode
fiber (SMF) and the output is then collimated. The beam is sent to a spatial light modulator
(SLM) and then to a 4f optical system containing a spatial filter in the Fourier plane. This
permits one to shape the angular Gaussian slit onto the beam. A polarization qubit is prepared
by means of a polarizer and a HWP, that are labeled as WP1. A dove prism (DP), a HWP
and two QWPs are placed inside the Sagnac interferometer; the waveplates are labeled as WP2.
The DP induces a small rotation between the counter-propagating beams; this is the weak
perturbation. The waveplates in WP2 induce a geometric phase between the H and V polarized
beams. After post-selection, measurements of angular positions and OAM spectra are performed
to access the real and imaginary parts of the weak value.

by setting the angle of a polarizer almost orthogonal with respect to the angle of the
polarizer used for pre-selection. At this stage, the measurement of the complex wave
function in the transverse angular basis and in the conjugate basis of OAM provides
information regarding the real and the imaginary part of the WV, respectively.

The state at the input of the interferometer has the form |Ψi〉 = |Ψpr〉 |f(φ)〉, which
is the product of the polarization state of the probe and the spatial profile of the pointer.
The state at the output of the interferometer is

|Ψf 〉 =
1√
2

(
e−i θ

2 |H〉 |f(φ − Δφ/2)〉 + ei θ
2 |V 〉 |f(φ + Δφ/2)〉

)
,(17)

where θ is defined as θH − π, and θH is the induced geometric phase, which is set by the
angle of the HWP in WP2. The post-selection is performed by projecting the perturbed
state onto |Φps〉 = sin

(
γ
2 − π

4

)
|H〉 + cos

(
γ
2 − π

4

)
|V 〉, where γ is controlled by the angle

of the post-selection polarizer. The post-selection collapses the polarization state of the
probe and causes a shift in the angular position and the OAM spectrum of the pointer;
this can be described as

|Ψp〉 = |Φps〉 〈Φps|Ψf 〉 ≈ |Φps〉 |f(φ − σwΔφ/2)〉 .(18)

Here, σw is the complex WV, given by

σw ≡ 〈Φps| σ̂ |Ψfpr〉
〈Φps|Ψfpr〉

.(19)
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Fig. 5. – Real weak value amplification of angular rotations. Panels a)-e) show simulations of
the experiment for Δφ = 1.2◦ and different post-selection angles (PA) and amplification factors
(Amp). Panels f)-j) show experimental evidence of our protocol under similar conditions (figure
adapted from ref. [21]).

The action of the polarization-sensitive Sagnac interferometer is described by σ̂, which is
defined as |H〉 〈H| − |V 〉 〈V |, and |Ψfpr〉 is described as 1√

2

(
e−i θ

2 |H〉 + ei θ
2 |V 〉

)
. |Ψfpr〉

represents the final state of the probe, after the induced geometric phase. If θ and γ/2
are small, the WV can be approximated as

σw ≈ − 2γ

γ2 + θ2
+ i

2θ

γ2 + θ2
.(20)

The post-selected state described in eq. (18) shows a change in angle as φ → φ−σwΔφ/2;
then

f(φ − σwΔφ/2) = e(−(φ−σwΔφ/2)2/2η2
φ) ∝ e(−(φ−Δ〈φ〉)2/2η2

φ)e(iφΔ〈�〉),(21)

where Δ 〈φ〉 = �(σw)Δφ/2 sets the amount of the pointer’s rotation. In addition, the
pointer experiences a shift in its OAM spectrum that equals Δ 〈�〉 = �(σw)Δφ/2η2

φ. The
shift in the OAM spectrum can be understood as an interaction between spin angular
momentum (SAM) and OAM. This optical effect is a consequence of the polarization-
sensitive nature of the interactions occurred in the interferometer, and it is not related
to the standard spin-orbit coupling in the vector beams where both of the spin and the
orbital angular momenta are directed along the same axis [46].

In this experiment, a 3 mW HeNe laser (632.8 nm) is coupled to a single-mode fiber
(SMF) and then expanded. The DP inside the Sagnac interferometer is rotated by 0.3◦.
The induced displacement Δφ is chosen to be much smaller than the width of the ANG
mode. The post-selection polarizer is set to an angle γ/2 with respect to the polarization
state of the pre-selected state. For the first part, θ is set to zero. The post-selection
polarizer forces the two ANG modes to coherently interfere, producing a rotated ANG
mode [8]. The rotation is proportional to the angular displacement Δφ and the real part
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Fig. 6. – OAM power spectra of the pointer without post-selection (blue) and with post-selection
(green) demonstrating the shift in 〈�〉 due to �(σw) for a) ηφ = 11.4◦, γ/2 = 6◦ and b) ηφ = 13.7◦

and γ/2 = 5◦. The angle θ/2 equals 5◦ for all the cases. The histograms represent measured
data, whereas lines represent theoretically predicted shifts. c) OAM centroid shift Δ〈�〉 for
various measured OAM power spectra plotted against the imaginary WV amplification factor,
�(σw)/2ηφ

2. Dots represent data, and the line is the theoretical linear curve predicted by eq. (7),
(figure adapted from ref. [21]).

of the WV �(σw). Since the WV takes values larger than one, this protocol allows the
amplification of small rotations. However, as �(σw) is increased more photons are lost;
this is shown for different post-selection angles (PA) in fig. 5.

As shown in eq. (21), one can access to the imaginary part of the WV by analyzing
the shift of the OAM spectrum of the pointer. In order to have complex WVs, the phase
θ has to be nonzero. The HWP in WP2 is therefore set to an angle such that θ/2 = 5◦

and we used different post-selection angles for the polarizer. For simplicity, the OAM
spectrum is measured by using projective measurements for various values of �.

As predicted by eq. (21), and shown in fig. 6, larger amplifications are obtained for
angular modes with narrow widths. However, such narrow ANG modes have physi-
cally smaller cross sections, and hence they proportionally carry less power. As shown
in fig. 6c), by exploiting the measurement process, small rotations are amplified by a
magnitude of 100 without using high OAM or nonclassical states of light.

This scheme represents the first step towards the study and understanding of WVA
in the azimuthal degree of freedom. We describe the physical mechanisms that produce
a shift in the angular position and OAM of an optical beam. The shift in the OAM
spectrum is a consequence of the breakup in the polarization symmetry, realized by a
differential geometric phase. These results provide a proof-of-principle demonstration of
the scope of WVA in this degree of freedom.

Compressive direct measurement of the transverse wave function. – We now describe
recent experiments related to the direct measurement of the wave function. We start this
section by introducing a technique called compressive direct measurement (CDM) [25].
This scheme combines the benefits of direct measurement with a computational technique
known as compressive sensing (CS) [47, 48]. CS uses a nonlinear algorithm to recover a
sparse n-dimensional signal from a series of m projective measurements. Unlike the case
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of linear reconstruction, the number of measurements m in a compressive scheme can be
much smaller than the dimension n of the signal. CS provides an efficient alternative
to raster scanning in the application where arrayed-detectors are either costly or not
available such as quantum optics and low-light-level measurements. Specific examples
include single-photon level imaging, entanglement characterization, and quantum ghost
imaging [49-55].

We use the polarization of the photon as the pointer. The initial system-pointer state
can be written as

|Ω〉 = |ψ〉 |V 〉 =
N∑

i=1

ψi |xi〉 |V 〉 ,(22)

where |V 〉 indicates that the initial polarization is vertical and where |ψ〉 is the initial
spatial wave function. We next perform a series of random weak measurements in order to
retrieve the spatial wave function |ψ〉. Each measurement is described by the projection
operator Q̂m, that can be expanded as a weighted sum of position projection operators
π̂j at all the points

Q̂m =
∑

j

Qm,j π̂j .(23)

For the purpose of simplifying the experiment we consider the special case where Qm,j a
real coefficient that can be either 1 or 0. The state of the particle after the measurement
can be approximately described as

eiα |Ω〉 ≈ |Ω〉 + α

N∑
i=1

Qm,jψi |xi〉 |H〉 .(24)

Following the weak measurement, we perform a projection onto the zeroth order
momentum state. This will erase the spatial structure of the photons and we are left
with a beam with the polarization state

|sm〉 = |V 〉 +
α

φ0

√
N

∑
j

Qm,jψj |H〉 .(25)

At this stage the information about the state-vector ψj is encoded in the expected values
of the polarization of the post-selected state

σ̄x,m = 〈sm| σ̂x |sm〉 = k
∑

j

Qm,j�[φj ],

σ̄y,m = 〈sm| σ̂y |sm〉 = −k
∑

j

Qm,j�[φj ],(26)
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where σ̂x = |H〉 〈V |+|V 〉 〈H|, σ̂y = −i |H〉 〈V |+i |V 〉 〈H| and κ = 2α
φ0

√
N

. After repeating
the measurement M times, one obtains a linear relation between the measurement results
and the unknown wave function

⎛
⎜⎜⎜⎝

φ1

φ2

...
φM

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

Q1,1 Q1,2 · · · Q1,N

Q2,1 Q2,2 · · · Q2,N

...
...

. . .
...

QM,1 QM,2 · · · QM,N

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ψ1

ψ2

...
ψN

⎞
⎟⎟⎟⎠ .(27)

Here, φm = 1
κ [σ̄x,m − iσ̄y,m], and m ∈ {1 : M} and n ∈ {1 : N}, where M is the number

of times the measurement is repeated with different random projections. For the case
where M = N , the solutions of the system above can be exactly solved for a non-singular
matrix Q̂. However, for the case when M ≤ N there exists multiple (and typically many,
for small Ms) solutions to the system of equation.

Compressive sensing provides a method for finding the solution by using the prior
knowledge of sparsity of the unknown function in a known basis. This is often achieved
by solving an optimization problem that can be formulated in multiple forms. In our
experiment, we assume sparsity in the gradient basis, which leads to the following opti-
mization problem

minψ′
∑

j

||∇ψ′
j ||l1 +

μ

2
||Q̂ψ′ − φ||2l2 .(28)

Here, ∇ψ′ is the discrete gradient of ψ′ at position xj , and μ is a weighting factor that
penalizes deviations from experimental data. Heuristically, the solution of the optimiza-
tion problem allows the determination of the smoothest state ψ′, that is approximately
in agreement with the experimental data.

Figure 7 shows the schematic of the experiment. A vertically polarized Gaussian
beam illuminates a SLM, which together with two QWPs (WP1 and WP2) performs the
polarization rotation. The amount of rotation can be controlled at each pixel by setting
the grayscale values on the SLM. After the Fourier transforming lens, the post-selection
in the momentum basis is performed by using a pinhole that projects on a single spatial
mode. As derived in sect. 3, the real part of the WV is retrieved by using a HWP (shown
as WP3 in fig. 7) and a PBS. Similarly, the imaginary part of the WV is measured by
using a QWP before the PBS. The flux of photons at the two output ports of the PBS
are detected with APDs.

For each measurement m, a pre-generated random binary matrix Q̂m is displayed on
the SLM. The photon fluxes measured at the APDs are used to find the expectation values
of the Pauli matrices for each measurement and subsequently φm. The wave function
is then retrieved via post processing on a computer. We use the algorithm known as
Total Variation Minimization by Augmented Lagrangian and Alternating Direction [56]
(TVAL3) to solve eq. (25).
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Fig. 7. – A collimated vertically polarized Gaussian beam illuminates a SLM, which is used
along with two QWPs (WP1and WP2) to rotate the polarization at each pixel. A lens focuses
the beam onto a pinhole with a diameter of 10 μm. The polarization measurement is performed
on the light collected from the pinhole using a QWP/HWP (WP3) and a PBS.

We perform the experiment on an aberrated Gaussian beam. This corresponds to
a complex wave function with non-trivial real and imaginary parts. First, the wave
function is reconstructed via standard direct measurement. The real and imaginary
parts from a pixel-by-pixel raster scan are shown on the left column of fig. 8 for an
N = 12 × 16 = 192 dimensional Hilbert space. On the middle column, we have shown
the real and imaginary parts of the wave function reconstructed from CDM using N = 192
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Fig. 8. – The amplitude, real, and imaginary parts of an aberrated Gaussian state measured
experimentally. The left column shows data from a pixel-by-pixel scan of the state for N = 192.
The middle column presents the reconstructed wavefront for N = 192, and M/N = 20% of
total measurements from the CDM method. The right column demonstrates reconstruction
of a higher dimensional state for N = 19200, and M/N = 20% of total measurements. The
transverse dimensions of the state are shown in millimeters (figure adapted from ref. [25]).
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Fig. 9. – The fidelity of the reconstructed state with the target wave function as a function
of the percentage of total measurements for a 192 dimensional state. The fidelity of the state
reconstructed with CDM is shown in blue. The fidelity of the retrieved state from a partial
pixel-by-pixel scan with the same number of measurements is shown in red. The error-bars
represent standard deviation calculated from 100 repetitions of the experiment (figure adapted
from ref. [25]).

and M/N×100 = 20%. It is evident that a reconstruction with 20% of measurements can
find all the main features of the wave function. Nevertheless, a high quality reconstruction
requires a more sparse signal. To achieve this, we use a smaller pixal size. This results in
a wave function with a larger dimension size. Moreover, the increased sampling results
in a more sparse representation in the gradient basis. On the right column of fig. 8 the
reconstructions for N = 120× 160 = 19200 and M/N × 100 = 20% are shown. It can be
seen that an experiment with 20% of measurements provides an accurate reconstruction.

We use fidelity as a metric for quantifying our results. For a pair of pure states,
fidelity is defined as

F (|ψ′〉 , |ψ〉) = | 〈ψ′|ψ〉 |.(29)

Here, the retrieved state |ψ′〉, via CDM, is compared with the target state |ψ〉 that
is retrieved from standard direct measurement. The results are shown in fig. 9. The
horizontal axis represents the percentage of measurements. The blue line shows the
fidelity of the retrieved state with the CDM method. The red curve represents the
average fidelity of the reconstructed state using the data from a partial pixel-by-pixel
measurement. It is remarkable that the compressive method results in a drastic increase
of fidelity for the first few measurements and gradually settles to a value close to 1. For
example, a fidelity as high as 90% is achieved by performing 25% of measurements, while
the standard direct measurement (this is, a raster scan) requires of approximately 80%
of all the measurements to achieve the same fidelity.

The measurement of the quantum wave function has been one of the great experimen-
tal challenges in quantum physics. Over the past 20 years, many seminal contributions



94 O. S. Magaña-Loaiza, M. Mirhosseini and R. W. Boyd

have been made to this field [57, 58]. Despite this achievements, the reconstruction of
high-dimensional states remains challenging. The direct measurement approach, intro-
duced by Lundeen et al., has provided a straight-froward experimental techniques that
can be easily adopted for measuring multi-level states. We have introduced the compres-
sive direct measurement as an efficient and fast technique for the direct measurement of
quantum wave functions with very large dimensions. In addition to quantum optics, our
technique can be used for application in classical regimes were an array of detectors is
not available, such as the imaging and wavefront sensing with Terahertz waves.

Direct measurement of a 27-dimensional OAM state. – Another remarkable appli-
cation of direct measurement is the characterization of a high-dimensional state in the
discrete basis of OAM [22]. The measurement of the OAM of light is considered an
important tool in the machinery of quantum optics [59-62], especially due to the wide
variety of applications that light endowed with OAM has found [63-66,41,46,59,42]. We
determine the probability amplitudes of a pure state by performing a weak measurement
of OAM and strong measurement of angular position. Remarkably, all the difficulties
of determining information of a state in the OAM basis can be reduced to performing
simple polarization measurements.

In a form similar to that by which a qubit is defined in the polarization degree of
freedom, a qudit can be defined in the OAM basis. For example, one can prepare a
photon in the following superposition:

|Ψ〉 =
∑

�

a� |�〉 ,(30)

where the coefficients a� are complex probability amplitudes and |�〉 is an eigenstate of
OAM with eigenvalue �. Similar to linear position and linear momentum, the angular
position and OAM of a photon form a discrete Fourier conjugate pair [67]. Therefore,
an ANG mode |θn〉 can be defined as an equally weighted superposition of OAM states
as 1√

2�0+1

∑�0
�=−�0

exp( i2πn�
2�0+1 ) |�〉; thus the OAM states |�〉 are mutually unbiased with

respect to the states in the angular position basis |θ〉; consequently, the inner product of
each pair of OAM and ANG has the same magnitude. Thus, one can define the quantity
c = 〈θ0|�〉/〈θ0|Ψ〉, which is a constant with respect to |�〉 when θ0 = 0. If |Ψ〉 is multiplied
by this constant, one can expand it as

c |Ψ〉 = c
∑

�

|�〉 〈�|Ψ〉 =
∑

�

|�〉 〈θ0|�〉〈�|Ψ〉
〈θ0|Ψ〉 =

∑
�

〈π�〉w |�〉 ,(31)

where π̂� is the OAM projection operator |�〉 〈�| and 〈π�〉w is the OAM weak value. There-
fore, by performing a weak measurement of the OAM followed by a strong measurement
in the angular position, one can obtain enough information to reconstruct the wave func-
tion in the angular basis. After post-selection, the final state has the final form shown
in eq. (13), so the weak value 〈π�〉w can be determined as in eq. (22) by implementing
the same polarization measurements.
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Fig. 10. – Simplified schematic of the experimental setup to directly measure the wave function
of a photon in the OAM basis. The mode sorter converts an OAM mode to a plane wave with
a tilt that is proportional to the OAM quantum number �. The unwrapped mode is Fourier
transformed by a lens to position modes that are magnified. The actual perturbation occurs
when the polarization of the mode is rotated by a small amount; this step is performed by an
SLM and two QWPs. The post-selection or strong measurement of angular position is performed
by a rectangular slit, placed after a Fourier-transforming lens. As in the previous protocols, a
series of polarization measurements, that involves the use of a HWP or QWP, allows for the
reconstruction of the complex wave function.

The experimental procedure for this protocol is depicted in fig. 10. The spatial profile
of the input field is prepared by encoding a wedge-shaped mask onto an SLM; this
procedure generates a sinc distribution of OAM probability amplitudes. The polarization
of the shaped beam is vertical. The mode sorter converts an OAM mode to a plane wave
with a tilt that is proportional to the OAM quantum number �. The unwrapped mode
is Fourier transformed by a lens to position modes. This is the first step in performing
the weak perturbation of the OAM projection operator. The actual perturbation occurs
when the polarization of the mode is rotated by a small amount; this step is performed by
an SLM and two QWPs. The post-selection or strong measurement of angular position
is performed by a rectangular slit, placed after a Fourier-transforming lens. As in the
previous protocols, a series of polarization measurements allows for the reconstruction of
the complex wave function.

Figure 11 shows the experimental results of this experiment. The real and imaginary
parts of the wave function from the experiment are shown in fig. 11a). The probability
density |Ψ(�)|2 and the phase φ(�) are calculated in fig. 11b) and c), respectively. In addi-
tion, the ability to measure the phase of the state allows one to measure rotations in the
OAM basis. Malik et al. demonstrate that this method permits one to directly observe
the phase acquired by the state after an angular rotation; in standard protocols that do
not use weak value this determination must be performed indirectly through interfero-
metric techniques. The acquired phase i�θ increases with the OAM quantum number �.
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Fig. 11. – Experimental data showing complete information of a 27-dimensional quantum state
in the OAM basis. The prepared state is given by the OAM spectrum of the angular aperture
shown in the inset of (b). (a) The measured real and imaginary parts of the quantum wave
function. (b) The measured probability distribution of the prepared state. (c) The measured
phase of the state (figure adapted from ref. [22]).

This experiment demonstrates the full characterization of a quantum state in the
OAM basis, a task that started more than 10 years ago with the measurement of orbital
angular momentum of a single photon [60]. It is important to stress the potential and
flexibility of direct measurement. In general, it can be applied to any degree of freedom.
However, the difficulty of the experiment depends on the involved variables or degrees
of freedom. For instance, in order to measure the quantum wave function in the OAM
basis, a log-polar to linear coordinate transformation, performed by the OAM sorter, was
required [61].

Full characterization of polarization states of light via direct measurement . – The last
experiment we will describe here is the full characterization of polarization states of light
via direct measurement. Here, Salvail et al. reconstruct the wave function of a qubit
system and its density matrix via direct measurement [24].
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Fig. 12. – Experimental setup utilized for the characterization of polarization states of light
via direct measurement. a) shows the state preparation that consists of a Gaussian transverse
mode in a polarization state created by a PBS, a HWP and a QWP. b) The weak perturbation is
performed by a quartz crystal at an oblique angle. c) The post-selection performed by a polarizer
at a diagonal or anti-diagonal position. The authors also show the measurement required to
reconstruct the Dirac distribution and the density matrix, which we do not discuss here. d)
Shows how the shift in near and far-field of the pointer is imaged onto a CCD camera (figure
adapted from ref. [24]).

As in the experiments discussed above, the definition of the weak value conveys an
idea of the experimental implementation. Here, the probe is an unknown wave function
|Ψ〉 that describes a polarization state of the form

|Ψ〉 = α |H〉 + β |V 〉 ,(32)

where α and β are complex probability amplitudes and |α|2 + |β|2 = 1. The pointer is
the spatial profile of the beam which is a Gaussian mode. As in Ritchie’s experiment [8],
the weak perturbation is performed by introducing a small lateral displacement between
the two polarization components of the beam; this is introduced by a quartz crystal at
an oblique angle. The protocol is formalized with a post-selection in the polarization
degree of freedom. A polarizer at either a diagonal or anti-diagonal position produces
the following weak value

〈πH〉 =
〈D|H〉〈H|Ψ〉

〈D|Ψ〉 =
α

α − β
.(33)

Equation (32) along with the relation between α and β, provide enough information
to retrieve the complete wave function of the polarization qubit by performing a single
post-selection. As shown in eqs. (8) and (9), the real part of the weak value can be
determined by measuring the shift in the position of the pointer, whereas the imaginary
component of the weak value is estimated through the shift in the momentum of the
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Fig. 13. – Experimental results for several input polarization states. a) Shows the real and
imaginary part of the weak value. b) Shows the corresponding probability amplitudes given by
the real and imaginary part of α and β (figure adapted from ref. [24]).

pointer. Therefore, the measurement of the centroid of the post-selected beam in the
near and far-field allows the reconstruction of the initial polarization state.

The experimental setup is shown in fig. 12. A collimated Gaussian mode is prepared
using a single mode fiber and a lens. A PBS, a HWP and a QWP allow the preparation
of the polarization qubit. A quartz plate induces a net shift between the two polarization
components of the beam. A non-polarizing beam splitter (NPBS) generates two copies
of the perturbed state which are then post-selected by a polarizer at either diagonal
or anti-diagonal position. The near-field and far-field of the post-selected beams are
imaged onto a CCD camera. These measurements allow one to retrieve the polarization
qubit. Figure 13 shows the real and imaginary components of the weak value and the
corresponding probability amplitudes for different polarization qubits.

In addition, the authors have determined the density matrix of the system through
the measurement of the elements of the Dirac distribution. However, this topic falls out
of the scope of this paper and we will not discuss it here.

In this paper, we have discussed the distinction between strong and weak measure-
ments. In addition, several applications of weak values were presented. We have also
explained the physics behind the first realization of a weak value and its relation with
some remarkable techniques for weak value amplification. In addition, the novel mea-
surement procedure known as direct measurement was described. Finally, we presented
some of the recent progress that our group has made on weak measurements, particularly
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we discussed weak value amplification in the azimuthal degree of freedom, compressive
direct measurement, direct measurement in the OAM basis, and the full characterization
of a polarization qubit.
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Società Italiana di Fisica.

REFERENCES

[1] Jacobs K., Quantum Measurement Theory and its Applications (Cambridge University
Press, Cambridge) 2014.

[2] Aharonov Y., Albert D. and Vaidman L., Phys. Rev. Lett., 60 (1988) 1351.

[3] Sokolovski D., Msezane A. Z. and Shaginyan V. R., Phys. Rev. A, 71 (2005) 064103.

[4] Lundeen J. S., Sutherland B., Patel A., C. S. and Bamber C., Nature, 474 (2011)
188.

[5] Steinberg A. M., Phys. Rev. Lett., 74 (1995) 2405.

[6] Aharonov Y., Botero A., Popescu S. and Reznik B., Phys. Lett. A, 301 (2002) 130.

[7] Kocsis S., Braverman B., Ravets S., Stevens M. J., Mirin R. P., Shalm L. K. and
Steinberg A. M., Science, 332 (2011) 1170.

[8] Ritchie N., Story J. and Hulet R., Phys. Rev. Lett., 66 (1991) 1107.

[9] Dressel J., Malik M., Miatto F. M., Jordan A. N. and Boyd R. W., Rev. Mod.
Phys., 86 (2014) 307.

[10] Botero A. and Reznik B., Phys. Rev. A, 61 (2000) 050301.

[11] Brunner N., Acin A., Collins D., Gisin N. and Scarani V., Phys. Rev. Lett., 91
(2003) 180402.

[12] Feizpour A., Xing X. and Steinberg A. M., Phys. Rev. Lett., 107 (2011) 133603.

[13] Viza G. I., Mart́ınez-Rincón J., Howland G. A., Frostig H., Shomroni I., Dayan

B. and Howell J. C., Opt. Lett., 38 (2013) 2949.

[14] Hofmann H. F., Phys. Rev. A, 83 (2011) 022106.

[15] Brunner N. and Simon C., Phys. Rev. Lett., 105 (2010) 010405.

[16] Hosten O. and Kwiat P., Science, 319 (2008) 787.

[17] Xu X.-Y., Kedem Y., Sun K., Vaidman L., Li C.-F. and Guo G.-C., Phys. Rev. Lett.,
111 (2013) 033604.
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