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Abstract Ghost images are obtained by correlating the output of a single-pixel
(bucket) photodetector—which collects light that has been transmitted through or
reflected from an object—with the output from a high spatial-resolution scanning
photodetector or photodetector array whose illumination has not interacted with that
object. The term “ghost image” is apt because neither detector’s output alone can yield
an image: the bucket detector has no spatial resolution, while the high spatial-resolution
detector has not viewed the object. The first ghost imaging experiment relied on the
entangled signal and idler outputs from a spontaneous parametric downconverter, and
hence the image was interpreted as a quantum phenomenon. Subsequent theory and
experiments showed, however, that classical correlations can be used to form ghost
images. For example, ghost images can be formed with pseudothermal light, for which
quantum mechanics is not required to characterize its photodetection statistics. This
paper presents an overview of the physics of ghost imaging. It clarifies and unites two
disparate interpretations of pseudothermal ghost imaging—two-photon interference
and classical intensity-fluctuation correlations—that had previously been thought to be
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conflicting. It also reviews recent work on ghost imaging in reflection, ghost imaging
through atmospheric turbulence, computational ghost imaging, and two-color ghost
imaging.

Keywords Ghost imaging · Photon statistics · Entanglement · Coherence theory ·
Atmospheric turbulence

1 Introduction

In 1995, Pittman et al. [1] demonstrated a novel imaging modality that used the entan-
gled signal and idler beams produced by spontaneous parametric downconversion
(SPDC). As shown in Fig. 1, the signal beam passed through an imaging lens, an inter-
ference filter, an aperture—comprised of slits spelling out “UMBC” in an otherwise
opaque screen—followed by a collection lens and a single-pixel photon-counting
detector. The idler beam propagated to and through an interference filter and then was
collected by a scanning fiber tip coupled to another single-photon detector. Neither
detector’s output alone sufficed to image the UMBC pattern: the signal beam passed
through the UMBC mask, but its single-pixel detector had no spatial resolution, and
the scanning fiber tip provided spatial resolution for its detector, but its illumination
had not encountered the UMBC mask. Nevertheless, photon coincidence counting—
using the outputs from both detectors—produced a UMBC image, as shown in Fig. 2.
Subsequent papers dubbed this a ghost image, and it was taken to be a quantum effect,
owing to the entangled nature of the signal and idler produced by SPDC.

Pittman et al. [1] concluded that, although they had made use of quantum entangle-
ment to form a ghost image, “it is indeed possible to imagine some type of classical
source that could partially emulate this behavior.” Abouraddy et al. [2] subsequently
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Fig. 1 Schematic setup for the first ghost imaging experiment [1]: BBO is beta-Ba2BO4 crystal for spon-
taneous parametric dowconversion; D1 and D2 are single-photon detectors; and N2 is a photon coinci-
dence-counting circuit
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The physics of ghost imaging 951

Fig. 2 Top: UMBC mask used in the Fig. 1 experiment. Bottom: UMBC image obtained from coincidence
counting in the Fig. 1 experiment as a function of the fiber tip’s transverse coordinates in the image plane.
The step size is 0.25 mm, and the image shown is a slice at the half-maximum value

showed, theoretically, that an entangled two-photon source produced a ghost image
whose characteristics differed in a fundamental way from those of one obtained using
a correlated, but not entangled, two-photon source. Later, Bennink et al. [3] reported
an experiment in which a demonstrably classical-state source yielded a ghost image.
Gatti et al. [4] followed with a theoretical paper showing that the classical-state setup
from [3] could not reproduce a key feature of ghost imaging using an SPDC source:
entanglement permits ghost images to be formed in the source’s near and far fields.
Their result can be understood as follows. According to the rules of quantum mechan-
ics, it is possible to first emit a photon and only after it is already in flight to decide
whether to measure its birthplace position or its transverse momentum. The Gatti et
al. prediction was confirmed in an experiment performed by Bennink et al. [5], who
showed that the same quantum source could form ghost images in either its near or
far fields, whereas their classical-state source from [3] could form a ghost image in
either its near field or its far field but not both. Howell et al. [6] later showed that the
Einstein–Podolsky–Rosen (EPR) correlations of the photons from an SPDC source of
the sort used in ghost imaging are strong enough to violate a Reid-EPR [7] bound by
a factor of approximately 25.

Still another aspect of ghost imaging emerged when theory [8–11] and experiment
[12,13] showed that pseudothermal light, i.e., laser light that has been rendered spa-
tially incoherent by passage through a rotating ground glass, could be used to form
a ghost image, albeit one riding on a significant featureless background level. For
example, consider the lensless quasithermal ghost imaging experiment of Scarcelli et
al. [14], shown schematically in Fig. 3. Here, light from a pseudothermal (chaotic)
source passes through an ordinary beam splitter. One output from this beam splitter
illuminates a two-slit transmission mask followed by a bucket detector, while the other
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Fig. 3 Schematic setup for the Scarcelli et al. quasithermal lensless ghost imaging experiment [14]: chaotic
source is laser light passed through a rotating ground-glass diffuser; D1 and D2 are photodiodes; a two-slit
mask is placed in front of D1; and the dc block (ac coupling) is used to suppress a featureless background

Fig. 4 Left: two-slit mask used in the Fig. 3 experiment. Right: photocurrent cross correlation as a function
of the transverse position of detector D2

illuminates a scanning detector. Cross correlating the ac-coupled photocurrents from
these detectors then yielded the ghost image shown in Fig. 4. Scarcelli et al. provided a
quantum-mechanical explanation for their ghost image, showing that it can be under-
stood as resulting from two-photon interference. Furthermore, they claimed that this
ghost image could not be explained as arising from correlations between the intensity
fluctuations in the light beams that illuminate the two detectors in Fig. 3. These asser-
tions have led to considerable controversy. One side argues that the pseudothermal
ghost image can be quantitatively explained—with results identical to those obtained
from quantum theory—using classical intensity-fluctuation correlations [15,16]. The
other side has argued that nonlocal two-photon interference is the only way to explain
the pseudothermal ghost image [14]. In this paper we will end the controversy by
clarifying and unifying these competing interpretations.

The remainder of the paper is organized as follows. In Sect. 2 we present brief
reviews of some necessary prerequisites: classical and quantum states of light;
semiclassical versus quantum photodetection; and coherence propagation for phase-
insensitive and phase-sensitive sources.1 The core of the paper is Sect. 3, which treats

1 A more extensive review of these topics can be found in [17] and [18].
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two forms of far-field lensless ghost-image formation,2 one using biphotons (entan-
gled signal-idler photon pairs) obtained from SPDC and the other using pseudothermal
light. We first reprise the Gaussian-state analyses of ghost images formed with SPDC
light [15] and pseudothermal light [16]. Here we will use quantum photodetection for
the former and semiclassical photodetection for the latter, although the same pseudo-
thermal image characteristics have been derived quantum mechanically [15]. Next,
in Sect. 4, we probe deeper into the physical interpretation of these ghost images.
Both are shown to be consequences of photon-flux-density cross-covariance behavior
that, for far-field propagation, is determined by classical coherence propagation, and
represents correlations between speckles that illuminate the high-spatial-resolution
detector and the object being imaged. Nevertheless, we will see that photocurrent
cross-correlation—or photon coincidence counting when flux levels are sufficiently
low—leads to a two-photon interference interpretation for both the biphoton and
pseudothermal configurations. In essence, Sect. 4 will close the door on any contro-
versy regarding the physical interpretation of pseudothermal ghost-image formation.
The quantitatively-identical predictions obtained from the semiclassical and quantum
theories of photodetection lead to the speckle cross-correlation and two-photon inter-
ference explanations for this process, respectively. That the semiclassical and quantum
theories yield identical measurements statistics in this case means that pseudothermal
ghost-imaging experiments cannot distinguish between these two interpretations, even
though we know that light is intrinsically quantum mechanical.

Sections 3 and 4 assume single-wavelength operation, a transmissive imaging
geometry, and free-space propagation. In Sect. 5 we extend our development to encom-
pass ghost imaging in reflection for single-wavelength operation when there is atmo-
spheric turbulence in the propagation path, thus establishing a foundation for the use
of ghost imaging in standoff sensing. Here we draw upon recent experimental [19–21]
and theoretical [22–24] work. Section 5 also includes a discussion of computational
ghost imaging, in which the ghost image is obtained by correlating the output from
a bucket detector with a computed reference field [16,20,21,25,26], as well as two-
wavelength operation with an SPDC source [27–29]. We finish, in Sect. 6, with a
summary of our essential conclusions, followed by comments about areas for future
ghost-imaging research.

2 Preliminaries

Before proceeding to analyses of biphoton and pseudothermal ghost imaging, it is
important, indeed critical, to establish notation and review essential foundational mate-
rial. We will be concerned, in Sect. 3, with quasimonochromatic, paraxial, scalar-wave
fields at center frequency ω0 whose nominal propagation direction is along the z axis,

2 Whereas the original SPDC ghost imaging setup of Pittman et al., shown in Fig. 1, employed an appropri-
ately-located imaging lens between its light source and the transmission mask, the Scarcelli et al. configu-
ration produces a pseudothermal ghost image without such a lens. Thus, to develop a unified understanding
of SPDC and pseudothermal ghost imaging, in what follows we will consider both source choices only for
lensless configurations akin to that in Fig. 3. It should be noted, however, that SPDC ghost imaging has
never been demonstrated in a lensless experimental configuration.
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and whose transverse coordinate vector is ρρρ. For classical electromagnetic waves
we will use Ez(ρρρ, , t)e−iω0t to denote the (photons/m2s)1/2-units positive-frequency
field in a constant-z plane.3 In the quantum case, the positive-frequency field opera-
tor, Êz(ρρρ, t)e−iω0t , takes the place of this classical field, again with (photons/m2s)1/2

units. The baseband field operator Êz(ρρρ, t) obeys the following commutation relations
[17]

[Êz(ρρρ1, t1), Êz(ρρρ2, t2)] = 0 (1)

[Êz(ρρρ1, t1), Ê†
z (ρρρ2, t2)] = δ(ρρρ1 − ρρρ2)δ(t1 − t2), (2)

where δ(·) is the impulse function. The subsections that follow address: classes of
quantum states that will be important for our analysis of ghost imaging; the relation
between semiclassical and quantum photodetection; and coherence propagation for
phase-insensitive (pseudothermal) and phase-sensitive (biphoton) sources.

2.1 Gaussian states, pseudothermal light, and biphotons

The Gaussian states of the quantized electromagnetic field, Êz(ρρρ, t), are the quan-
tum analogs of classical electromagnetic fields that are Gaussian random processes in
space and time. Thus, as in the classical case, they are completely characterized by
their first and second moments, i.e., their mean field 〈Êz(ρρρ, t)〉 and their covariance
functions,

K (n)

Êz Êz
(ρρρ1, t1;ρρρ2, t2) =

〈
�Ê†

z (ρρρ1, t1)�Êz(ρρρ2, t2)
〉

(3)

K (p)

Êz Êz
(ρρρ1, t1;ρρρ2, t2) =

〈
�Êz(ρρρ1, t1)�Êz(ρρρ2, t2)

〉
, (4)

where �Êz(ρρρ, t) ≡ Êz(ρρρ, t) − 〈Êz(ρρρ, t)〉. Phase-insensitive field fluctuations are
quantified by the normally-ordered covariance, K (n)

Êz Êz
(ρρρ1, t1;ρρρ2, t2), because it is

invariant to any randomness in the absolute phase of the field. On the other hand, the
phase-sensitive covariance, K (p)

Êz Êz
(ρρρ1, t1;ρρρ2, t2), is subject to the effect of a random

absolute phase.
The coherent state |Ez(ρρρ, t)〉 is the quantum analog of the deterministic (noise-

free) classical electromagnetic field. It is the eigenket of Êz(ρρρ, t) with eigenfunction
Ez(ρρρ, t):

Êz(ρρρ, t)|Ez(ρρρ, t)〉 = Ez(ρρρ, t)|Ez(ρρρ, t)〉, for all ρρρ, t . (5)

3 These units—chosen for ease of comparison with the quantum case—merely indicate that we are mea-
suring the energy carried by a classical electromagnetic wave in units of h̄ω0, rather than in Joules. No
quantization is implied at this point.
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Equivalently, it is a Gaussian state with 〈Êz(ρρρ, t)〉 = Ez(ρρρ, t), K (n)

Êz Êz
(ρρρ1, t1;ρρρ2, t2) =

0 and K (p)

Êz Êz
(ρρρ1, t1;ρρρ2, t2) = 0. Because, as we will explain in the next subsection,

the quantum photodetection statistics for the coherent state |Ez(ρρρ, t)〉 coincide with
the semiclassical photodetection statistics for the classical light beam Ez(ρρρ, t), we say
that coherent states are classical states. More generally, a quantum state is classical
if its quantum photodetection statistics are identical to those obtained from semiclas-
sical photodetection using an appropriate random process Ez(ρρρ, t). More precisely,
the state of Êz(ρρρ, t) is classical if and only if it is a coherent state or a classically-
random mixture of coherent states. The latter possibility is saying that Êz(ρρρ, t) is in
the coherent state |Ez(ρρρ, t)〉, but we have classical uncertainty about its eigenfunction,
Ez(ρρρ, t), so we treat that eigenfunction as a classical random process.

Pseudothermal light is well modeled by a zero-mean Gaussian state whose phase-
sensitive covariance vanishes, but whose phase-insensitive (normally-ordered) covari-
ance function is nonzero. All such states are classical [18]. Following prior work on
Gaussian-state pseudothermal ghost imaging [15,18], we shall use the cross-spectrally
pure covariance function, K (n)

Êz Êz
(ρρρ1, t1;ρρρ2, t2) = 2K(ρρρ1,ρρρ2)R(t1 − t2), where the

spatial term has the Gaussian-Schell model form

K(ρρρ1,ρρρ2) = 2P

πa2
0

e−(|ρρρ1|2+|ρρρ2|2)/a2
0−|ρρρ1−ρρρ2|2/2ρ2

0 , (6)

and the temporal term is

R(t1 − t2) = e−(t1−t2)2/2T 2
0 , (7)

for the phase-insensitive covariance function at the source (z = 0) plane, with P being
the average photon flux in the signal and reference beams, i.e., after the 50–50 beam
splitting employed in pseudothermal lensless ghost imaging. Here: a0 is the source’s
e−2 intensity radius; ρ0 � a0 is its spatial coherence length; and T0 is its coherence
time. This is not an exact model for a laser beam that has been passed through a rotating
ground-glass diffuser. In particular, the action of the rotating ground-glass diffuser on
a continuous-wave laser beam will lead to coupled spatial and temporal variations on
the resulting output beam, violating our assumption of cross-spectral purity. Also, our
assumption of Gaussian statistics will not be valid until sufficient propagation away
from the ground glass has occurred that the Central Limit Theorem can be invoked.
Nevertheless, there is little to be lost in employing the preceding statistical model. It is
the spatial characteristics that are of primary importance in understanding the physics
of ghost imaging. Hence lack of cross-spectral purity is not a major concern. Fur-
thermore, as we shall see in our discussion of coherence theory, pseudothermal ghost
imaging is ordinarily done in a far-field regime for which the Central Limit Theorem
will apply. More importantly, there is much to be gained by employing the statistical
model posited above: the preceding covariance function enables closed-form evalu-
ations of the key performance parameters—field-of-view, spatial resolution, image
contrast, and image signal-to-noise ratio—of a lensless pseudothermal ghost image
[15,18,30–33].
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Type-II phase-matched spontaneous parametric downconversion with a continuous
wave (cw) pump in the absence of pump depletion produces orthogonally polarized
signal and idler beams that are in a maximally-entangled, zero-mean, jointly Gaussian
state [34]. When operated at frequency degeneracy, the signal and idler at the source’s
output plane can be taken to have positive-frequency field operators ÊS(ρρρ, t)e−iω0t

and Ê I (ρρρ, t)e−iω0t , for their respective polarizations, whose joint state is completely
characterized by the nonzero auto- and cross-covariance functions:

K (n)
SS (ρρρ1, t1;ρρρ2, t2) ≡

〈
�Ê†

S(ρρρ1, t1)�ÊS(ρρρ2, t2)
〉
, (8)

K (n)
I I (ρρρ1, t1;ρρρ2, t2) ≡

〈
�Ê†

I (ρρρ1, t1)�Ê I (ρρρ2, t2)
〉
, (9)

K (p)
SI (ρρρ1, t1;ρρρ2, t2) ≡

〈
�ÊS(ρρρ1, t1)�Ê I (ρρρ2, t2)

〉
. (10)

The signal and idler, as individual light beams, are in classical states, because they
have no phase-sensitive auto-covariances. Thus their entanglement, which is a quan-
tum feature, shows itself in their phase-sensitive cross covariance, because it exceeds
the limit set by classical physics given their auto-covariance functions [18]. To enable
closed-form solutions for the field-of-view, spatial resolution, and image contrast of a
lensless SPDC ghost image, we shall take the preceding auto-covariance functions to
be cross-spectrally pure Gaussian-Schell model forms,

K (n)
SS (ρρρ1, t1;ρρρ2, t2) = K (n)

I I (ρρρ1, t1;ρρρ2, t2) = K(ρρρ1,ρρρ2)R(t1 − t2), (11)

where the spatial and temporal terms are as given for the pseudothermal source. For the
phase-sensitive cross covariance, we will assume maximally-entangled light [18,30],
so that:

K (p)
SI (ρρρ1, t1;ρρρ2, t2) = 2P

πa2
0

e−(|ρρρ1|2+|ρρρ2|2)/a2
0

[
i e−|ρρρ1−ρρρ2|2/2ρ2

0 e−(t1−t2)2/2T 2
0

+ (2/π)1/4
√

a2
0

PT0ρ
2
0

e−|ρρρ1−ρρρ2|2/ρ2
0 e−(t1−t2)2/T 2

0

]
. (12)

Note that I ≡ PT0ρ
2
0/a

2
0 , which is the average number of signal (or idler) photons

per spatiotemporal mode, plays a key role in these SPDC statistics. Under typical
cw operating conditions we have that I � 1, i.e., the source has very low bright-
ness. In this case the second term in Eq. (12) dominates the first and is also much
stronger than the auto-covariance terms. As a result, if a photon pair is detected in
photon-coincidence measurements made over an observation interval short enough
that multiple-pair detections can be ignored, then the source’s post-selected output
can be regarded as a biphoton [34] whose spatial-frequency/temporal-frequency wave
function is the Fourier transform (in space and time) of the second term in Eq. (12),4

4 This state is not normalizable, i.e., SI 〈ψ |ψ〉SI = ∞, but it captures the entangled nature of the signal
and idler.
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|ψ〉SI ∝
∫

d�

2π

∫
dkS

(2π)2

∫
dkI

(2π)2
e−|kS−kI |2a2

0/8e−|kS+kI |2ρ2
0/16

×e−�2T 2
0 /4|kS,�〉S| − kI ,−�〉I . (13)

In Eq. (13), kS, kI are the transverse wave vectors,� is the frequency detuning from
the center frequencyω0, and |kS,�〉S, (|−kI ,−�〉I ) denotes the single-photon states
of the signal (idler), with transverse wave vector kS (−kI ) and frequency detuning
�(−�).

Conversely, when I � 1, as has been achieved in pulse-pumped SPDC [35], the
first term in Eq. (12) dominates the second, and cross correlating photocurrent mea-
surements on the signal and idler beams mimic those of Gaussian-state light whose
phase-sensitive cross correlation is at the limit set by classical physics [30]. That said,
however, 50–50 combining of such high-brightness signal and idler fields will produce
highly nonclassical outputs with strong quadrature-noise squeezing. The interested
reader may consult [15,18,30] for the performance of ghost imaging systems that use
classical-state light with phase-sensitive cross correlations. In all that follows, how-
ever, we will limit our attention for phase-sensitive sources to the maximally-entangled
SPDC model given above and its biphoton (low-brightness, low-flux) specialization.

2.2 Semiclassical versus quantum photodetection

Inasmuch as reconciling “quantum ”and “classical” interpretations of pseudothermal
ghost imaging is a central theme of this paper, it behooves us to be absolutely clear as
to what we mean by these terms. Light is intrinsically quantum mechanical, and high-
sensitivity photodetection is a quantum measurement capable of revealing nonclassical
features in its illumination. Therefore all optical imaging phenomena are fundamen-
tally quantum mechanical. However, it has long been known [17,36] that quantitatively
identical measurement statistics result in all three basic photodetection paradigms—
direct detection, homodyne detection, and heterodyne detection—when the illumina-
tion’s quantum state is a coherent state or a classically-random mixture of coherent
states and the semiclassical theory of photodetection is employed, i.e., the field is
treated classically and the discreteness of the electron charge in the detector leads
to shot-noise generation. Thus, in all that follows we shall say that a ghost-imaging
configuration is “classical” if its measurement statistics are correctly described by the
use of semiclassical photodetection theory, and that the configuration is “quantum” if
a correct description of its measurement statistics requires the use of quantum photo-
detection theory. In the rest of this subsection we give a very brief review of these two
photodetection theories, for a more detailed review the reader should consult [17].

2.2.1 Semiclassical photodetection

Suppose that a classical field Ez(ρρρ, t)e−iω0t illuminates a photodetector whose active
region A lies in the z plane. According to semiclassical photodetection theory,
charge carriers—free electrons in a photomultiplier tube, hole-electron pairs in a
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semiconductor photodiode—are created in a conditional Poisson-process manner in
response to this illumination. When this shot noise, plus any intrinsic randomness in
the classical field, dominate other sources of noise in the detector, as we shall assume
throughout our analysis, the output photocurrent i(t) has the following statistics. Given
knowledge of the classical photon-flux,

P(t) ≡
∫

A
dρρρ |Ez(ρρρ, t)|2, (14)

at all times, i(t)/q is an inhomogeneous Poisson impulse train with rate function
μ(t) ≡ ηP(t). Here, q is the electron charge,5 0 < η ≤ 1 is the detector’s quantum
efficiency at wavelength λ0 = 2πc/ω0, and we have taken the detector’s output cir-
cuit to have infinite bandwidth.6 Consequently, when Ez(ρρρ, t) is a classical random
process, we have that the photocurrent’s mean and covariance function obey

〈i(t)〉 = qη〈P(t)〉, (15)

and

Kii (t1, t2) ≡ 〈�i(t)�i(u)〉 = q2η〈P(t)〉δ(t1 − t2)+ q2η2 K P P (t1, t2), (16)

respectively, where �i(t) ≡ i(t) − 〈i(t)〉, and K P P (t1, t2) is the classical photon-
flux’s covariance function. The first term on the right in Eq. (16) is the shot-noise
contribution while the second term is due to randomness in the illuminating photon
flux. When Ez(ρρρ, t) is a zero-mean Gaussian random process in space and time, as
will be the case for the classical model of pseudothermal ghost imaging, we have that

〈P(t)〉 =
∫

A
dρρρ K (n)

Ez Ez
(ρρρ, t;ρρρ, t), (17)

and

K P P (t1, t2) =
∫

A
dρρρ1

∫

A
dρρρ2

[∣∣∣K (n)
Ez Ez

(ρρρ1, t1;ρρρ2, t2)
∣∣∣
2 +
∣∣∣K (p)

Ez Ez
(ρρρ1, t1;ρρρ2, t2)

∣∣∣
2
]
,

(18)

in terms of the normally-ordered and phase-sensitive covariances of Ez(ρρρ, t).7

5 We have ignored, by assumption, any current-multiplication randomness, as occurs in photomultipliers
and avalanche photodiodes. Thus, without loss of generality, we are using the electron charge as the charge
released per charge-carrier generation.
6 This infinite-bandwidth assumption is not restrictive because explicit photocurrent filtering will be
employed in the ghost-imaging calculations to follow.
7 Equation (18) follows from the definition of P(t) and the classical moment-factoring theorem for
Gaussian random processes [37].
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When two classical fields Eb(ρρρ, t)e−iω0t and E p(ρρρ, t)e−iω0t illuminate bucket and
scanning-pinhole photodetectors, as will be the case in lensless pseudothermal ghost
imaging, the shot noises in their respective photocurrents ib(t) and i p(t)will be statisti-
cally independent, but statistical dependence between any randomness in the classical
photon-fluxes,

Pm(t) ≡
∫

Am

dρρρ |Em(ρρρ, t)|2, for m = b, p, (19)

will lead to a nonzero cross-covariance between these photocurrents. When the
classical fields are zero-mean, jointly-Gaussian random processes, the individual
photocurrents’ means and auto-covariances are as given above and their cross
covariance is

Kibi p (t1, t2) ≡ 〈�ib(t1)�i p(t2)〉 = q2η2 K Pb Pd (t1, t2) (20)

= q2η2
∫

Ab

dρρρ1

∫

Ap

dρρρ2

[∣∣∣K (n)
Eb E p

(ρρρ1, t1;ρρρ2, t2)
∣∣∣
2

+
∣∣∣K (p)

Eb E p
(ρρρ1, t1;ρρρ2, t2)

∣∣∣
2
]
. (21)

This cross-covariance expression will provide the key to semiclassical understanding
of pseudothermal ghost imaging.

2.2.2 Quantum theory of photodetection

According to the quantum theory of photodetection [17,36], the classical photocurrent
i(t) resulting from illumination of an active-region A, quantum-efficiency η photode-
tector in the z plane by a photon-units positive-frequency quantum field Êz(ρρρ, t)e−iω0t

is a random process whose classical statistics coincide with the quantum measurement
statistics of the photocurrent operator î(t) that is given by

î(t) =
∫

A
dρρρ Ê ′†

z (ρρρ, t)Ê ′
z(ρρρ, t). (22)

Here, we have

Ê ′
z(ρρρ, t) ≡ √

η Êz(ρρρ, t)+√1 − η Êzv (ρρρ, t), (23)

where Êzv (ρρρ, t)e−iω0t is a vacuum-state, photon-units, positive-frequency field oper-
ator whose presence contributes quantum noise to î(t) when η < 1 prevails.

If the field Êz(ρρρ, t) is in the coherent state |Ez(ρρρ, t)〉, then it turns out [17,36] that
the measurement statistics for î(t)/q are those of an inhomogeneous Poisson impulse
train with rate function
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μ(t) = η

∫

A
dρρρ |Ez(ρρρ, t)|2, (24)

i.e., they are identical to those of semiclassical theory for deterministic illumination
by a classical field Ez(ρρρ, t)e−iω0t . It follows that if Êz(ρρρ, t) is in a random mix-
ture of coherent states, viz., conditioned on knowledge of a classical random process
Ez(ρρρ, t) the quantum field state is the coherent state |Ez(ρρρ, t)〉, then the statistics
obtained from quantum photodetection coincide with those obtained from semiclas-
sical photodetection of the classical, random positive-frequency field Ez(ρρρ, t)e−iω0t .
This same quantum-to-semiclassical equivalence applies to the case of quantum fields,
Êb(ρρρ, t) and Ê p(ρρρ, t), illuminating bucket and scanning-pinhole photodetectors when
their joint state is a coherent state or a random mixture of such states, as is the case
for pseudothermal lensless ghost imaging.

In quantum photodetection theory, the mean and covariance of the photocurrent
obey

〈î(t)〉 = qη
∫

A
dρρρ
〈
Ê†

z (ρρρ, t)Êz(ρρρ, t)
〉
, (25)

and8

Kîî (t1, t2) = q2η

∫

A
dρρρ
〈
Ê†

z (ρρρ, t1)Êz(ρρρ, t1)
〉
δ(t1 − t2)

+q2η2
∫

A
dρρρ1

∫

A
dρρρ2

[〈
Ê†

z (ρρρ1, t1)Ê
†
z (ρρρ2, t2)Êz(ρρρ1, t1)Êz(ρρρ2, t2)

〉

−
〈
Ê†

z (ρρρ1, t1)Êz(ρρρ1, t1)
〉 〈

Ê†
z (ρρρ2, t2)Êz(ρρρ2, t2)

〉]
. (26)

Although these expressions look similar to their semiclassical counterparts, there is
a very significant difference in their covariances. Specifically, the second term in the
semiclassical-photocurrent covariance formula from Eq. (16) is positive-semidefinite,
representing the noise contributed to the photocurrent by fluctuations in the classical
illumination Ez(ρρρ, t). On the other hand, the second term in the quantum-photocurrent
covariance Eq. (26) need not be positive-semidefinite. Thus in quantum photodetection
it is possible to have lower-than-shot-noise behavior of the photocurrent, something
that is impossible in semiclassical theory.

Of interest for the ghost imaging work to follow is the specialization of the pre-
ceding mean and covariance formulas to the case of zero-mean Gaussian-state light,
which may either be a classical state, as for example with pseudothermal light, or a
quantum state, e.g., squeezed-state light. We have that

8 The delta function in Eq. (26) arises from the [Êz(ρρρ1, t1), Ê†
z (ρρρ2, t2)] = δ(ρρρ1 −ρρρ2)δ(t1 − t2) commu-

tator.
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〈î(t)〉 = qη
∫

A
dρρρ K (n)

Êz Êz
(ρρρ, t;ρρρ, t), (27)

and9

Kîî (t1, t2) = q2η

∫

A
dρρρ K (n)

Êz Êz
(ρρρ, t1;ρρρ, t1)δ(t1 − t2)+ q2η2

∫

A
dρρρ1

∫

A
dρρρ2

×
[∣∣∣K (n)

Êz Êz
(ρρρ1, t1;ρρρ2, t2)

∣∣∣
2 +
∣∣∣K (p)

Êz Êz
(ρρρ1, t1;ρρρ2, t2)

∣∣∣
2
]
, (28)

in terms of the quantum field’s normally-ordered and phase-sensitive covariances.
These results appear identical to their semiclassical counterparts—from Eqs. (15)–
(18)—but the reader is cautioned to remember that quantum fields can have stronger
phase-sensitive covariances than classical physics permits.

When two zero-mean, jointly-Gaussian quantum fields illuminate bucket and
scanning-pinhole photodetectors, the resulting photocurrents have means and auto-
covariance functions as given in the preceding paragraph and a cross covariance that
obeys

Kîbî p
(t1, t2)

= q2η2
∫

Ab

dρρρ1

∫

Ap

dρρρ2

[∣∣∣∣K (n)

Êb Ê p
(ρρρ1, t1;ρρρ2, t2)

∣∣∣∣
2

+
∣∣∣∣K (p)

Êb Ê p
(ρρρ1, t1;ρρρ2, t2)

∣∣∣∣
2
]
. (29)

Again we have a formula apparently the same as the semiclassical case, see Eq. (21), but
the reader is reminded that quantum fields admit to phase-sensitive cross-covariance
functions that exceed the bounds of classical physics. As we shall see in Sect. 3,
Eq. (29) will be the foundation for the field-of-view, spatial resolution, and image
contrast behavior of quantum ghost imaging.

2.3 Coherence propagation for phase-insensitive and phase-sensitive light

The theory of partial coherence has a long and storied history in classical sta-
tistical optics, see, e.g., [39], with many applications in imaging and interferom-
etry. The vast majority of this work addresses sources whose positive-frequency
fields are statistically stationary in time, hence their baseband complex envelopes
only have phase-insensitive covariance functions. In contrast, the quantum optics
of squeezed-state generation depends on second-order nonlinear interactions that
produce fields whose baseband field operators have nonzero phase-insensitive and
phase-sensitive covariance functions, see, e.g., [40]. During the past decade there has

9 The second term in this auto-covariance follows from the quantum version of Gaussian moment-factoring
[38].
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been great interest in exploiting biphoton states—obtained from SPDC—in imaging
systems, including ghost imaging. As a result, coherence theory for such sources has
been developed [41], and its behavior compared to classical, phase-insensitive coher-
ence theory. Here we shall quickly summarize a unified treatment of coherence the-
ory that encompasses classical and quantum sources—in the sense of Sect. 2.2—and
covers both phase-insensitive and phase-sensitive covariance functions [42]. We will
restrict our attention to quasimonochromatic, paraxial, scalar fields, which will suffice
for our analysis of ghost imaging. Hence the quasimonochromatic Huygens–Fresnel
principle provides the necessary foundation for coherence propagation.

Given a classical quasimonochromatic, paraxial, positive-frequency scalar field
E0(ρρρ, t)e−iω0t over the z = 0 plane that is propagating in the +z direction, the result-
ing classical field EL(ρρρ

′, t) in the z = L plane is given by10

EL(ρρρ
′, t) =

∫
dρρρ E0(ρρρ, t − L/c)hL(ρρρ

′ − ρρρ), (30)

where

hL(ρρρ) ≡ eik0 L+ik0|ρρρ|2/2L

iλ0 L
, (31)

is the Huygens–Fresnel principle Green’s function (spatial impulse response), and
k0 ≡ 2π/λ0 is the wave number. It turns out that the same quasimonochromatic
Huygens–Fresnel principle governs the propagation of a quasimonochromatic, parax-
ial, positive-frequency scalar field operator Ê0(ρρρ, t)e−iω0t from z = 0 to z = L , viz.,
all that needs to be done in Eq. (31) is to replace the classical baseband fields, E0(ρρρ, t)
and EL(ρρρ

′, t), with their field-operator counterparts, Ê0(ρρρ, t) and ÊL(ρρρ
′, t) [17,43].

It is well known in classical random-process theory that Gaussian random processes
remain Gaussian under linear transformations. The linearity of Eq. (30) then implies
that if E0(ρρρ, t) is a Gaussian process, so too is EL(ρρρ

′, t). The same closure under
linear transformations applies in the quantum case to Gaussian states [17]. Hence
the quantum version of Eq. (30) implies that ÊL(ρρρ

′, t) will be in a Gaussian state if
Ê0(ρρρ, t) is in a Gaussian state.

The Gaussian states of interest for our study of ghost imaging will all have zero
means, so that we only have to propagate phase-insensitive and phase-sensitive covari-
ance functions from the input plane (z = 0) to the output plane (z = L) to obtain a
complete statistical characterization of the output field, be it classical or quantum. At
this point, standard linear systems theory leads to

K (n)

ÊL ÊL
(ρρρ′

1, t1;ρρρ′
2, t2) =

∫
dρρρ1

∫
dρρρ2 K (n)

Ê0 Ê0
(ρρρ1, t1 − L/c;ρρρ2, t2 − L/c)

×h∗
L(ρρρ

′
1 − ρρρ1)hL(ρρρ

′
2 − ρρρ2) (32)

10 Equation (31) is the familiar monochromatic Huygens–Fresnel principle augmented by the direct-path
propagation delay, L/c, to account for the quasimonochromatic nature of the source.
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and

K (p)

ÊL ÊL
(ρρρ′

1, t1;ρρρ′
2, t2) =

∫
dρρρ1

∫
dρρρ2 K (p)

Ê0 Ê0
(ρρρ1, t1 − L/c;ρρρ2, t2 − L/c)

×hL(ρρρ
′
1 − ρρρ1)hL(ρρρ

′
2 − ρρρ2) (33)

for quantum-covariance propagation. Classical-covariance propagation is governed
by the same equations with K (x)

Ez Ez
appearing in lieu of K (x)

Êz Êz
for x = n, p, and

z = 0, L . Furthermore, a similar development applies to propagation of the (quantum
or classical) cross-covariance functions between signal and reference fields, as will be
needed in the Sect. 3 analysis of lensless ghost imaging.

The formal results, given in Eqs. (32) and (33), contain but do not explicitly commu-
nicate the physical differences between phase-insensitive and phase-sensitive coher-
ence propagation. To make those differences explicit, let us examine the implications
of the preceding coherence-propagation equations when

K (n)

Ê0 Ê0
(ρρρ1, t1;ρρρ2, t2) = K (p)

Ê0 Ê0
(ρρρ1, t1;ρρρ2, t2) = K(ρρρ1,ρρρ2)R(t1 − t2), (34)

where K and R are given by Eqs. (6) and (7), respectively.11 Quasimonochromatic,
paraxial coherence propagation does not change the temporal portions of these covari-
ance functions, i.e., from Eqs. (32) and (33) we find that

K (x)

ÊL ÊL
(ρρρ′

1, t1;ρρρ′
2, t2) = K(x)(ρρρ′

1,ρρρ
′
2)R(t1 − t2), for x = n, p, (35)

where

K(n)(ρρρ′
1,ρρρ

′
2)

= 2P

πa2
L

e−ik0(|ρρρ′
1|2−|ρρρ′

2|2)/2L−|ρρρ′
1+ρρρ′

2|2/2a2
L−|ρρρ′

1−ρρρ′
2|2/2ρ2

L , for
k0ρ0a0

2L
� 1, (36)

and

K(p)(ρρρ′
1,ρρρ

′
2)

= 2P

πa2
L

eik0(|ρρρ′
1|2+|ρρρ′

2|2)/2L−|ρρρ′
1+ρρρ′

2|2/2ρ2
L−|ρρρ′

1−ρρρ′
2|2/2a2

L , for
k0a2

0

2L
� 1, (37)

where aL ≡ λ0L/πρ0 and ρL ≡ λ0L/πa0.12 Equations (35)–(37) exhibit interesting
behaviors in both their temporal and spatial dependencies, as we now explain. More
details can be found in [18] and [42].

11 Here we have chosen to use the classical spatial term from our SPDC K (p)
SI (ρρρ1, t1,ρρρ2, t2) expression.

The quantum term’s propagation behavior is similar.
12 The inequalities assumed in Eqs. (36) and (37) are far-field conditions, see below.
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Fig. 5 Far-field,
phase-insensitive spatial
coherence behavior of the
baseband field operator
ÊL (ρρρ

′, t) with phase-sensitive
covariance function from
Eq. (36) [18]. Three plane-wave
components are shown here as
three arrows with different
colors (and line styles). The
plane waves with which they
have phase-insensitive
correlation lie within the shaded
cones of the same color (and
same line-style borders).
Because phase-insensitive
coherence is quasimonoplanatic,
the coherence cone for each
plane wave is centered on its
own propagation direction
(Color figure online)

The time-stationarity of R implies that phase-insensitive fluctuations at detuning�
from the field’s center frequency ω0 are uncorrelated with those at detuning �′ = �,
but the phase-sensitive fluctuations at detuning � are only correlated with those at
detuning −� from ω0. The monochromatic behavior of the phase-insensitive covari-
ance—every frequency uncorrelated with all others—is well known. The bichromatic
behavior of the phase-sensitive covariance is less well known, but fully consistent with
the biphoton state from Eq. (13), in which a signal photon at detuning � always has
a companion idler photon at detuning −�.

Equation (36) bears a striking similarity to Eq. (6). It differs in two principal ways:
the presence of phase-curvature terms in the former that are absent from the latter,
and the replacement of the source-plane intensity and coherence radii, a0 and ρ0,
with their far-field output-plane counterparts, aL and ρL . Because we have assumed a
low-spatial-coherence source, i.e., ρ0 � a0, the output plane intensity and coherence
radii are the usual van Cittert–Zernike Theorem results [39]. Note that this low spa-
tial coherence allows us to use Fraunhofer (far-field) propagation, rather than Fresnel
propagation, when k0ρ0a0/2L � 1, rather than the much more restrictive far-field
condition, k0a2

0/2L � 1, which applies to a collimated, fully-coherent Gaussian
beam of intensity-radius a0. As shown in Fig. 5, the phase-insensitive fluctuations are
quasimonoplanatic, in that any particular plane-wave component’s phase-insensitive
fluctuations are only correlated with those within a narrow cone of propagation direc-
tions centered on its own. Like the temporal behavior of phase-insensitive fluctuations,
this spatial characteristic is well known from classical coherence theory.

The far-field spatial characteristics of the phase-sensitive fluctuations are rather dif-
ferent from the preceding phase-insensitive case. First, its far-field condition is much
more stringent than that for phase-insensitive coherence, coinciding with the one for
the collimated, fully-coherent Gaussian beam. Second, as shown in Fig. 6, it is qua-
sibiplanatic, i.e., any particular plane-wave component’s phase-sensitive fluctuations
are only correlated with those within a narrow cone of propagation directions centered
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Fig. 6 Far-field, phase-sensitive
spatial coherence behavior of the
baseband field operator
ÊL (ρρρ

′, t) with phase-sensitive
covariance function from
Eq. (37) [18]. Three plane-wave
components are shown here as
three arrows with different
colors (and line styles). The
plane waves with which they
have phase-sensitive correlation
are shown as shaded cones
having the same color (and same
line-style borders). Because
phase-sensitive coherence is
quasibiplanatic, the coherence
cone for each plane wave
component is centered around its
mirror image about the optical
(z) axis (Color figure online)

on the mirror image about the z axis of its own. This quasibiplanatic behavior is seen
in the biphoton state from Eq. (13) in that a signal photon at transverse propagation
vector kS is accompanied by an idler photon at transverse propagation vector −kI that
satisfies |kS − kI | ≤ 2/a0.

3 Ghost imaging in transmission

Armed with the tools from Sect. 2, we are well prepared to address ghost-image forma-
tion for both quantum (biphoton) and classical (pseudothermal) sources. In this section
we shall do so for single-wavelength operation and objects viewed in transmission.
The unified Gaussian-state framework of [15] permits the field-of-view, spatial resolu-
tion, image contrast, and signal-to-noise ratio (SNR) of both cases to be derived from a
common quantum-mechanical formulation. For the pseudothermal source, however, a
quantitatively identical treatment results from the use of semiclassical photodetection.
We shall content ourselves with a quick review of the Gaussian-state results for field-
of-view, spatial resolution, and image contrast.13 Of greater importance, however, is
the physical understanding of ghost-image formation. The Gaussian-state treatment
implies that the ghost image of a transmission mask arises from the photon flux-density
cross correlation between the light hitting the high-spatial-resolution detector and the
light that has passed through the transmission mask and illuminates the bucket detector.
Moreover, for pseudothermal ghost imaging analyzed with semiclassical photodetec-
tion theory, this photon-flux density cross correlation is the intensity cross-correlation
of the classical fields. On the other hand, ghost imaging with an SPDC source has a
natural interpretation as two-photon interference. Furthermore, the mathematics for
the semiclassical treatment of pseudothermal ghost imaging can be rearranged to admit

13 The reader is directed to [18,30,31] for SNR behavior, which will not be discussed here.
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to a similar interference interpretation. Thus we will devote Sect. 4 to the development
and discussion of these alternative interpretations of ghost-image formation.

3.1 SPDC ghost imaging

Figure 7 shows the configuration we will consider for quantum-source ghost imaging
in transmission. Here the signal and idler from a frequency-degenerate spontaneous
parametric downconverter provide, respectively, the signal, ÊS(ρρρ, t), and reference,
ÊR(ρρρ, t), for lensless ghost imaging of a transmission mask of field-transmission
function T (ρρρ) located L m away from the source. The ghost image is formed by cross
correlating the photocurrents, ib(t) and i p(t), from the bucket and scanning-pinhole
detectors. We will assume that the signal and idler from the downconverter are in the
zero-mean, jointly-Gaussian state specified by the Gaussian-Schell model covariances
from Sect. 2.1, that L m of free space propagation takes these fields into the far field,
as discussed in Sect. 2.3, and that the photodetectors are characterized by quantum
photodetection theory, as described in Sect. 2.2, with the addition of the dc-coupled
output filter HB(�) = e−2�2/�2

B with unity dc response and bandwidth �B . The
output of this correlator, when the pinhole location is ρρρ p, is the ghost image at that
point. The full image is thus built up by scanning the pinhole over the region illu-
minated by the reference light. Note that the low-flux limit of the photocurrent cross
correlation shown in this figure is equivalent to the photon coincidence-counting that
is typically employed in SPDC ghost-imaging experiments.

To understand the field-of-view, spatial resolution, and image contrast afforded by
the Fig. 7 configuration it suffices to compute the ensemble-average image 〈C(ρρρ p)〉,
because it is indicative of what will be obtained experimentally from long-duration
time averaging. Because the baseband field operators for our SPDC source have covar-
iances that are statistically stationary in time, we have that

Fig. 7 Configuration for lensless ghost imaging of a transmission mask using an SPDC source. Not shown
is Êb(ρρρ, t) = T (ρρρ)Ês (ρρρ, t)+

√
1 − |T (ρρρ)|2 Êsv (ρρρ, t), the quantum field that illuminates the bucket detec-

tor, where Êsv (ρρρ, t) is a vacuum-state field operator needed to preserve commutator brackets in the presence
of transmission loss through the mask T (ρρρ)
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〈C(ρρρ p)〉 = 〈ib(t)i p(t)〉. (38)

Using the photocurrent mean and cross-covariance expressions from quantum photo-
detection of Gaussian-state light and accounting for the presence of the transmission
mask T (ρρρ), we then find that [15]

〈C(ρρρ p)〉 = q2η2
∫

Ab

dρρρ K (n)

Ês Ês
(ρρρ, t;ρρρ, t)|T (ρρρ)|2

∫

Ap

dρρρ K (n)

Ê p Ê p
(ρρρ, t;ρρρ, t)

+ q2η2
∫

dτ1

∫
dτ2

∫

Ab

dρρρ1

∫

Ap

dρρρ2 hB(t − τ1)hB(t − τ2)

× |K (p)

Ês Ê p
(ρρρ1, τ1;ρρρ2, τ2)|2|T (ρρρ1)|2, (39)

where hB(t) is the impulse response associated with HB(�) and Ab (Ap) is the bucket
(pinhole) detector’s photosensitive region.

To draw out the imaging characteristics implicit in this expression let us make the
following additional assumptions, which are realistic for SPDC ghost imaging: (1)
the brightness of the SPDC source is sufficiently low that we can omit the first term
on the right in Eq. (12) in its phase-sensitive cross covariance;14 (2) the area Ap of
the pinhole detector’s sensitive region Ap is small enough that the covariance func-
tions can be taken to be constant over that region; and (3) the coherence time T0 of
the SPDC source is much less than the reciprocal bandwidth 1/�B of the detectors’
output filters. Under these conditions, Eq. (39) reduces to

〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2
⎡
⎢⎣e−2|ρρρ p |2/a2

L

∫

Ab

dρρρ e−2|ρρρ|2/a2
L |T (ρρρ)|2

+ �Ba2
0

16
√
π Pρ2

0

e−|ρρρ p |2/a2
L

∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L e−|ρρρ|2/a2

L |T (−ρρρ)|2
⎤
⎥⎦. (40)

From this equation it is easy to discern the key characteristics of the low-brightness
SPDC ghost image. Its field of view—measured in transverse coordinates—is ∼√

2aL

in extent, i.e., it is set by the source’s intensity radius at the transmission mask. Let us
assume that |T (ρρρ)| is nonzero only for |ρρρ| � aL , so that Eq. (40) simplifies to

14 As noted in Sect. 2.1, this is the regime wherein the Gaussian-state treatment of SPDC reduces to the
post-selected biphoton approximation.
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〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2
⎡
⎢⎣
∫

Ab

dρρρ |T (ρρρ)|2

+ �Ba2
0

16
√
π Pρ2

0

∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L |T (−ρρρ)|2

⎤
⎥⎦. (41)

Here we see that the dc-coupled photocurrent cross correlation is comprised of a fea-
tureless background term—the first term on the right in Eq. (41)—plus an inverted
image of the transmission mask’s intensity-transmission function |T (ρρρ)|2 that has
been subjected to convolution with a Gaussian point-spread function of spatial res-
olution ρL , viz., the SPDC source’s coherence radius at the transmission mask. The
image contrast, taken to be the maximum of the image term in Eq. (41) divided by the
background term, is approximately �Ba2

L/P AT � 1, for a spatially-resolved binary
(one-zero) mask with area AT ≡ ∫ dρρρ |T (ρρρ)|2. The inequality applies in the low-flux
(biphoton) regime, wherein at most one signal-idler pair occurs within the detectors’
1/�B output-filter integration time. A derivation of the SPDC lensless ghost image
that starts from the biphoton state, Eq. (13), leads to a prediction that there is no
featureless background term [44]. Indeed SPDC ghost imaging experiments—done
in the biphoton regime using photon-coincidence counting—generally have negligi-
ble background [1]. The absence of a background term, in the biphoton theory of
SPDC ghost imaging, comes from that state’s being a perturbative approximation to
the true Gaussian state, which omits the multiple-pair contributions responsible for
the background [34].15

3.2 Pseudothermal ghost imaging

The Gaussian-state analysis of pseudothermal ghost imaging closely parallels what we
have just done for the SPDC case. Figure 8 shows the configuration we shall consider
for classical-source ghost imaging in transmission. Here, signal and reference fields are
obtained by passing a cw laser beam through a rotating ground-glass diffuser followed
by a 50–50 beam splitter. Both fields propagate over L-m-long free-space paths, after
which the signal beam passes through the transmission mask T (ρρρ) and on to a bucket
detector, while the reference beam illuminates a scanning-pinhole detector. As in the
previous subsection, the ghost image is formed by cross correlating the photocurrents
from the bucket and scanning-pinhole detectors. Because pseudothermal light, treated
quantum mechanically, is a Gaussian random mixture of coherent states, we know that
the quantum photodetection treatment of the Fig. 8 setup will lead to the same statistics
for the photocurrent cross correlation as found from semiclassical theory—cf. [15],
which uses quantum theory, and [16], which uses semiclassical theory—and hence

15 Experimentalists lump these multiple-pair contributions into what they report as “accidental” coinci-
dences, a category that also includes coincidences arising from dark counts and other experimental non-
idealities which we are not including in this paper.
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Fig. 8 Configuration for lensless ghost imaging of a transmission mask using a pseudothermal source. Not
shown is Eb(ρρρ, t) = T (ρρρ)Es (ρρρ, t), the classical field that illuminates the bucket detector

arrive at identical results for the behavior of lensless pseudothermal ghost imaging.
Therefore we have shown classical fields in Fig. 8, and we will use semiclassical
analysis in what follows.

Our goal in this subsection is to determine the field-of-view, spatial resolution, and
image contrast of the pseudothermal ghost image by deriving the correlator’s ensem-
ble-average output, 〈C(ρρρ p)〉. The classical signal and reference fields will be taken to
be completely-correlated, zero-mean, jointly Gaussian random processes character-
ized by their non-zero covariances, namely

K (n)
ES ES

(ρρρ1, t1,ρρρ2, t2) = K (n)
ER ER

(ρρρ1, t1,ρρρ2, t2) = K (n)
ES ER

(ρρρ1, t1,ρρρ2, t2)

= K(ρρρ1,ρρρ2)R(t1 − t2) = 2P

πa2
0

e−(|ρρρ1|2+|ρρρ2|2)/a2
0−|ρρρ1−ρρρ2|2/2ρ2

0 e−(t1−t2)2/2T 2
0 . (42)

Using the photocurrent mean and cross-covariance expressions from semiclassical
photodetection of Gaussian-state light and accounting for the presence of the trans-
mission mask T (ρρρ), we get [16]

〈C(ρρρ p)〉 = q2η2
∫

Ab

dρρρ K (n)
Es Es

(ρρρ, t;ρρρ, t)|T (ρρρ)|2
∫

Ap

dρρρ K (n)
E p E p

(ρρρ, t;ρρρ, t)

+q2η2
∫

dτ1

∫
dτ2

∫

Ab

dρρρ1

∫

Ap

dρρρ2 hB(t − τ1)hB(t − τ2)

×|K (n)
Es E p

(ρρρ1, τ1;ρρρ2, τ2)|2|T (ρρρ1)|2. (43)

To make the imaging characteristics embedded in Eq. (43) explicit, we again assume
that far-field propagation has occurred and that the covariance functions are constant
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over the pinhole detector’s sensitive region. Unlike the SPDC case, however, we
assume that the coherence time T0 of the pseudothermal source greatly exceeds the
reciprocal bandwidth 1/�B of the detectors’ output filter. Under these conditions,
Eq. (43) becomes

〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2

e−2|ρρρ p |2/a2
L

⎡
⎢⎣
∫

Ab

dρρρ e−2|ρρρ|2/a2
L |T (ρρρ)|2

+
∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L e−2|ρρρ|2/a2

L |T (ρρρ)|2
⎤
⎥⎦. (44)

Here we see that the field-of-view, in transverse coordinates, is ∼aL , i.e., narrower
than that for SPDC ghost imaging. Making the assumption that |T (ρρρ)| is nonzero only
for |ρρρ| � aL gives us

〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2
⎡
⎢⎣
∫

Ab

dρρρ |T (ρρρ)|2 +
∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L |T (ρρρ)|2

⎤
⎥⎦. (45)

It is interesting to compare Eq. (45) with Eq. (41). Both consist of the same
featureless background term plus a ghost-image term. The SPDC ghost image is
inverted, but the pseudothermal ghost image is erect. Both ghost images have res-
olutions limited to ρL , by convolution with a Gaussian point-spread function. For
a spatially-resolved binary transmission mask, the low-flux SPDC ghost image has
very high contrast, whereas the image contrast of the pseudothermal ghost image
is ∼ πρ2

L/AT � 1. Note, however, that the background term can be suppressed
by ac coupling the detectors into the correlator, i.e., by measuring the photocur-
rents’ cross covariance, rather than their cross correlation, as has been done experi-
mentally in [14]. As explained in [30], the presence of a strong background term in
the pseudothermal configuration has consequences for its signal-to-noise ratio, even
when ac coupling is used to eliminate its contribution to 〈C(ρρρ p)〉, i.e., the average
image.

There is one final note worth making in conjunction with our Gaussian-state anal-
ysis of lensless ghost imaging. In both Figs. 7 and 8 we assumed that the source-to-
detector path lengths for the signal and reference paths were the same. This is not an
accidental choice. Lensless ghost imaging is not shadow casting. In particular, chang-
ing either path length by�L changes ρL in the ghost-imaging point-spread functions

for SPDC and pseudothermal operation to ρL

√
1 + (�L/k0ρ

2
L)

2 [16], leading to a

focal region satisfying |�L|/L = 4L/k0a2
0 � 1 as reported for the experiments in

[19].
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4 Two interpretations for ghost-image formation

The Gaussian-state analysis we have presented for lensless ghost imaging in transmis-
sion is pleasing for its unified coverage of SPDC and pseudothermal operation, and for
its closed-form results for the field-of-view, spatial resolution, and image contrast. It
does not, however, convey sufficient intuitive understanding of ghost-image formation.
Thus in this section we shall strive to develop that understanding by describing two
physical interpretations that offer different insights into this image-formation process:
photon-flux-density speckle correlations, and two-photon interference.

4.1 Ghost-image formation via speckle correlations

The correlator output in the lensless ghost-imaging setup shown in Fig. 7 for SPDC illu-
mination, and in Fig. 8 for pseudothermal illumination, is the TI -s-long time average
of ib(t)i p(t), the product of their bucket and scanning-pinhole detectors’ photocur-
rents. For an intuitive understanding of how the ghost image arises, let us first consider
the bucket and scanning-pinhole detectors’ photocurrents individually. For both our
SPDC and our pseudothermal source models, the quantum fields Ês(ρρρ, t) and Ê p(ρρρ, t)
that illuminate the transmission mask and the scanning pinhole have reduced density
operators that are zero-mean Gaussian states with phase-insensitive covariances given
by

K (n)

Êm Êm
(ρρρ1, t1;ρρρ2, t2) = 2P

πa2
L

e−ik0(|ρρρ1|2−|ρρρ2|2)/2L−|ρρρ1+ρρρ2|2/2a2
L−|ρρρ1−ρρρ2|2/2ρ2

L

×e−(t1−t2)2/2T 2
0 , for m = s, p, (46)

in the far field, and no phase-sensitive covariance. Hence these reduced density oper-
ators are classical states, so that their individual photocurrents have statistics which
are accurately characterized by semiclassical photodetection theory. Accordingly, we
can regard ib(t)/q and i p(t)/q as conditional Poisson impulse trains that are driven
by the classical-photon-flux densities16

Pb(t) ≡ η

∫

Ab

dρρρ Is(ρρρ, t)|T (ρρρ)|2, (47)

16 For simplicity, in this section, we will assume the photodetectors have infinite electrical (output) band-
width. This poses no problem for the pseudothermal source, as its bandwidth can easily be kept much lower
than the photodetectors’ electrical bandwidth. Such is not the case for the SPDC source, whose ∼THz
bandwidth outstrips the electrical bandwidth of available photodetectors. However, because our goal in this
section is to understand the spatial characteristics of ghost-image formation, no loss of generality in treating
the SPDC case ensues from our infinite-bandwidth assumption.
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and

Pp(t) ≡ η

∫

Ap

dρρρ Ip(ρρρ, t) ≈ ηAp Ip(ρρρ p, t), (48)

where { Im(ρρρ, t) ≡ |Em(ρρρ, t)|2 : m = s, p }, are the classical photon-flux densities
(intensities in units of photons/m2-s) of identically-distributed, classical, zero-mean,
Gaussian random processes, { Em(ρρρ, t) : m = s, p }, with phase-insensitive covari-
ances given by Eq. (46) and no phase-sensitive covariance. It has long been known
that such classical photon-flux densities consist of time-varying speckle patterns [45].
When sampled at a single space-time point, Im(ρρρ, t) is an exponentially-distributed
random variable. As a random process in space and time, Im(ρρρ, t) has coherence time
T0 and coherence area πρ2

L . Were the joint state of Ês(ρρρ, t) and Êm(ρρρ, t) a classical
state, then the joint statistics of ib(t) and i p(t) would admit to a semiclassical char-
acterization that is identical to that derived from quantum photodetection theory. We
could then say that

〈C(ρρρ p)〉 =
〈

1

TI

TI /2∫

−TI /2

dt ib(t)i p(t)

〉

= q2η2 Ap
1

TI

TI /2∫

−TI /2

dt
∫

Ab

dρρρ 〈Is(ρρρ, t)Ip(ρρρ p, t)〉|T (ρρρ)|2, (49)

demonstrating that the average ghost image at pinhole coordinateρρρ p is due to the aver-
age cross-correlation between the two classical speckle patterns, Is(ρρρ, t) and Ip(ρρρ p, t).
But pseudothermal ghost imaging does obey the preceding premise: the joint state of
the quantum fields Ês(ρρρ, t) and Ê p(ρρρ, t) is classical, hence it is entirely fair to interpret
the pseudothermal ghost image as arising from speckle correlations, i.e., the corre-
lation between the photon-flux-density illumination patterns. Furthermore, it is easy
to see that with pseudothermal light Is(ρρρ, t) and Ip(ρρρ, t) have completely-correlated
speckle patterns, because in the pseudothermal setup identical classical signal and
reference fields exit the 50–50 beam splitter, and that complete correlation remains
after each has propagated over an L-m-long free space path.

The speckle-correlation interpretation of pseudothermal ghost-image formation
immediately connects to the Gaussian-state results we presented in Sect. 3.2. In par-
ticular, writing

〈Is(ρρρ, t)Ip(ρρρ p, t)〉 = 〈Is(ρρρ, t)〉〈Ip(ρρρ p, t)〉 + 〈�Is(ρρρ, t)�Ip(ρρρ p, t)〉, (50)

leads to the first term creating the featureless background, and the second term pro-
ducing the ghost image. Moreover, the aL = λ0L/ρ0 radii of the overall {Im(ρρρ, t)}
speckle patterns and their ρL = λ0 L/a0 coherence radii explain the field-of-view and
spatial resolution that we found in Sect. 3.2, and the classical limit on the strength
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of two fields’ phase-insensitive cross covariance can be shown to imply the image
contrast that was determined in that section.

The compelling nature of the photon-flux-density speckle correlation interpreta-
tion of pseudothermal ghost-image formation begs us to examine whether or not this
classical interpretation has a quantum extension that encompasses SPDC ghost-image
formation. It turns out that it does. Quantum photodetection theory tells us that

〈C(ρρρ p)〉 =
〈

1

TI

TI /2∫

−TI /2

dt îb(t)î p(t)

〉

= q2 Ap
1

TI

TI /2∫

−TI /2

dt
∫

Ab

dρρρ 〈 Î ′
b(ρρρ, t) Î ′

p(ρρρ p, t)〉, (51)

where

Î ′
m(ρρρ, t) ≡ Ê ′†

m (ρρρ, t)Ê ′
m(ρρρ, t), for m = b, p (52)

give the effective photon-flux-density operators. Here, we have that

Ê ′
m(ρρρ, t) ≡ √

η Êm(ρρρ, t)+√1 − η Êmv (ρρρ, t), for m = b, p, (53)

with { Êmv (ρρρ, t) : m = b, p } being vacuum-state field operators that contribute quan-
tum noise when η < 1. Also, the field operator illuminating the bucket detector is
found from

Êb(ρρρ, t) ≡ T (ρρρ)Ês(ρρρ, t)+
√

1 − |T (ρρρ)|2 Êsv (ρρρ, t), (54)

where Êsv (ρρρ, t) is another vacuum-state field operator, this one accounting for prop-
agation loss through the transmission mask T (ρρρ). When Eq. (51) is evaluated for
pseudothermal light, it reduces to the semiclassical result presented above, but what
happens when Eq. (51) is evaluated for SPDC light?

For SPDC light we must stick with the quantum formulation because the joint
state of Êb(ρρρ, t) and Ê p(ρρρ, t) is nonclassical. Nevertheless, we can still expand the
integrand in Eq. (51) in terms of mean values and covariance:

〈
Î ′
b(ρρρ, t) Î ′

p(ρρρ p, t)
〉
=
〈
Î ′
b(ρρρ, t)

〉 〈
Î ′

p(ρρρ p, t)
〉
+
〈
� Î ′

b(ρρρ, t)� Î ′
p(ρρρ p, t)

〉
. (55)

When the terms on the right are evaluated—using our Gaussian-state model for SPDC
light—they of course lead to the results of Sect. 3.1 after substitution into Eq. (51).
The first term in Eq. (55) creates the featureless background, while the second term
is responsible for the ghost image. Furthermore, the background term—which can be
evaluated from semiclassical theory, because it only depends on the reduced density
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operators of the signal and idler fields—is identical to that of pseudothermal illumi-
nation with the same photon flux, intensity radius and coherence radius. The quantum
nature of SPDC light manifests itself in the covariance term of Eq. (55), because, as
we have already seen, that ghost-image term exceeds the covariance bounds set by
classical physics, making the dc-coupled SPDC image one of very high contrast. So,
because the individual photon-flux densities produced by SPDC light at the detec-
tors are classical speckle patterns, and because their covariance—albeit one requiring
quantum photodetection to account for its strength—yields the ghost image, it is appro-
priate to regard the SPDC ghost image as coming from speckle correlations, but these
speckle correlations have nonclassical strength.

4.2 Ghost-image formation as two-photon interference

In Sect. 1 we alluded to the controversy that has swirled around the pseudothermal
ghost image’s physical interpretation. Must it be it be explained quantum mechanically,
or can it be regarded as arising from correlations between the intensity fluctuations in
the light beams that illuminate the bucket and pinhole detectors? We have just seen
that the pseudothermal ghost image does have a physical interpretation as arising from
speckle correlations between the two detectors’ illuminations, because that interpre-
tation accompanies the semiclassical Gaussian-state analysis of pseudothermal ghost
imaging which is quantitatively identical to its quantum treatment. We went further,
in Sect. 4.1, by asserting that there is a similar quantum speckle-correlation interpre-
tation that applies to SPDC ghost imaging, with the principal quantum feature being
that image’s having dc-coupled contrast far in excess of what classical physics allows.
Now it is time to argue for SPDC ghost imaging’s having an interpretation as two-
photon interference, and to see how that quantum interpretation has an extension to
the pseudothermal case.

Let us start by considering the SPDC setup from Fig. 7 when the source is assumed
to operate in the low-brightness, low-flux regime wherein we can regard its post-
selected output as a biphoton.17 Using the position and time representation, instead of
the wave-vector and frequency representation from Eq. (13), we can say that

|ψ〉S R ∝
∫

dtS

∫
dtI

∫
dρρρS

∫
dρρρR ψS R(ρρρS, tS;ρρρR, tR)|ρρρS, tS〉S|ρρρR, tR〉R, (56)

is the biphoton state of the signal and reference fields, ÊS(ρρρ, t) and ÊR(ρρρ, t), where

ψS R(ρρρS, tS;ρρρR, tR) = e−(|ρρρS |2+|ρρρR |2)/a2
0 e−|ρρρS−ρρρR |2/ρ2

0 e−(tS−tR)
2/T 2

0 , (57)

17 The two-photon interference interpretation for SPDC ghost imaging arises from the biphoton expres-
sion for the average photon-coincidence rate between the bucket and scanning pinhole detectors—derived
below—which is proportional to the point-spread-function degraded version of the object’s intensity trans-
mission |T (ρρρ)|2. As such, all the biphotons that contribute to the ghost image are post-selected biphotons.
For the sake of brevity, however, we shall just refer to them as biphotons.
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is its biphoton wave function, and |ρρρS, tS〉S (|ρρρR, tR〉R) is the single-photon state of
the signal (reference) at position ρρρS (ρρρR) and time tS (tR). Free-space propagation of
the signal and reference fields over L-m-long far-field paths and passage of the former
through the transmission mask lead to quantum fields Êb(ρρρ, t) and Ê p(ρρρ p, t) that
impinge on the bucket and scanning-pinhole detector, respectively, which are in the
biphoton state |ψ〉bp with wave function [41]

ψbp(ρρρb, tb;ρρρ p, tp) ∝ T (ρρρb)

∫
dρρρS

∫
dρρρR hL(ρρρb − ρρρS)hL(ρρρ p − ρρρR)

×ψS R(ρρρS, tb − L/c;ρρρR, tp − L/c). (58)

Continuing with our simplifying assumption of infinite electrical-bandwidth photode-
tectors, we have that the probability that photons will be detected simultaneously atρρρb

on the bucket detector andρρρ p on the scanning-pinhole detector at time t is proportional
to the second-order Glauber coherence function [46]

G(2)
bp (ρρρb, t;ρρρ p, t) ≡ bp〈ψ |Ê†

b(ρρρb, t)Ê†
p(ρρρ p, t)Êb(ρρρb, t)Ê p(ρρρ p, t)|ψ〉bp (59)

= |ψbp(ρρρb, t;ρρρ p, t)|2 (60)

∝ |T (ρρρb)|2e−(|ρρρb|2+|ρρρ p |2)/a2
L e−|ρρρb+ρρρ p |2/ρ2

L . (61)

In biphoton theory, the average ghost image is given by

〈C(ρρρ p)〉 ∝
∫

Ab

dρρρb G(2)
bp (ρρρb, t;ρρρ p, t), (62)

which becomes

〈C(ρρρ p)〉 ∝
∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L |T (−ρρρ)|2, (63)

when |T (ρρρ)| is only nonzero for |ρρρ| � aL .
Equation (63) shows that biphoton theory predicts a background-free SPDC ghost

image whose spatial resolution is the same as what we found from Gaussian-state
analysis. From this result we can also see why it was initially thought that entangle-
ment was essential to ghost imaging. In particular, were ÊS(ρρρ, t) and ÊR(ρρρ, t) to be in
a product state, then Êb(ρρρ, t) and Ê p(ρρρ, t) would be too. The second-order Glauber
coherence function of Êb(ρρρ, t) and Ê p(ρρρ, t) would then factor into the product of
first-order coherence functions for the individual fields, so that when the second-order
function is integrated over the bucket detector, all image information about |T (ρρρ)|2
would be lost. Of course, the reduced density operators for Êb(ρρρ, t) and Ê p(ρρρ, t),
when their joint state is the biphoton whose wave function is given by Eq. (58), are
mixed states, each of which spreads its photon-detection probability density over a
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spatial region of radius aL that is much greater than the SPDC ghost image’s ρL spa-
tial resolution. The biphoton entanglement that produces the ghost image described
by Eq. (63) can then be rightly termed as originating from nonlocal two-photon inter-
ference, in which observation of a photon on the scanning-pinhole detector at location
ρρρ p collapses the reduced state of Ês(ρρρ, t) so that its photon will be detected within a
ρL radius of location −ρρρ p on the transmission mask.

Having exhibited a two-photon interference interpretation for the SPDC ghost
image, let us conclude this section by showing how such an interpretation can be
developed for the pseudothermal ghost image. We will do so means of Eq. (62)—i.e.,
by assuming that the pseudothermal source is operated at very low photon flux, so
that the photocurrent cross correlation in Fig. 8 can be taken to be photon-coincidence
counting—in which we will use the classical, Gaussian-state expression

G(2)
bp (ρρρb, t;ρρρ p, t) ≡ 〈E∗

b (ρρρb, t)E∗
p(ρρρ p, t)Eb(ρρρb, t)E p(ρρρ p, t)〉 (64)

for the second-order coherence function. From Sec. 2.3 we know that the classical
fields in this coherence function are related to the output from the pseudothermal
source by the quasimonochromatic Huygens–Fresnel principle,

Eb(ρρρb, t) = T (ρρρb)

∫
dρρρ E(ρρρ, t − L/c)hL(ρρρb − ρρρ), (65)

and

E p(ρρρ p, t) =
∫

dρρρ E(ρρρ, t − L/c)hL(ρρρ p − ρρρ), (66)

where we have used E(ρρρ, t) ≡ ES(ρρρ, t) = ER(ρρρ, t), which applies at the output of
the 50–50 beam splitter in Fig. 8. To get at the two-photon interference interpretation
we are seeking, we shall exploit the low spatial coherence of the pseudothermal source
to decompose E(ρρρ, t) into the sum of statistically-independent, zero-mean, Gaussian-
distributed contributions, {Em(t)}, from its M ∼ a2

0/ρ
2
0 � 1, radius-ρ0, centers at

{ρρρm : 1 ≤ m ≤ M }, coherence areas. In terms of these contributions we have that

Eb(ρρρb, t) ≈ T (ρρρb)

M∑
m=1

Em(ρρρb, t) (67)

and

E p(ρρρ p, t) ≈
M∑

m=1

Em(ρρρ p, t), (68)

where

Em(ρρρ, t) ≡ Em(t − L/c)hL(ρρρ − ρρρm)πρ
2
0 . (69)
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Now we have that

G(2)
bp (ρρρb, t;ρρρ p, t) ≈

〈
M∑

m=1

|T (ρρρb)|2|Em(ρρρb, t)|2
M∑

m′=1

|Em′(ρρρ p, t)|2

+
M∑

m=1

T ∗(ρρρb)E
∗
m(ρρρb, t)Em(ρρρ p, t)

×
M∑

m′=1

T (ρρρb)Em′(ρρρb, t)E∗
m′(ρρρ p, t)

〉
(70)

=
〈

M∑
m=1

M∑
m′=1

∣∣∣∣
T (ρρρb)√

2
[Em(ρρρb, t)Em′(ρρρ p, t)

+Em′(ρρρb, t)Em(ρρρ p, t)]∣∣2
〉
, (71)

where the independent, zero-mean nature of the fields contributed by pseudothermal
source’s different coherence areas has been employed to eliminate terms in which
phase-randomness is present, and M � 1 has been used to ignore the double counting
of the M terms with m = m′ because the extra contribution is small in comparison
with the M(M − 1) terms with m = m′.

If we complete the averaging in Eq. (70), again using M � 1 to ignore the double
counting of the m = m′ terms, we get

G(2)
bp (ρρρb, t;ρρρ p, t) ≈

M∑
m=1

|T (ρρρb)|2〈|Em(ρρρb, t)|2〉
M∑

m′=1

〈|Em′(ρρρ p, t)|2〉

+|T (ρρρb)|2
∣∣∣∣∣

M∑
m=1

〈E∗
m(ρρρb, t)Em(ρρρ p, t)〉

∣∣∣∣∣
2

. (72)

Inserting Eq. (72) into Eq. (62) gives the expected result: the first term on the right
in Eq. (72) produces a featureless background, and the second term yields the ghost
image. Moreover, that ghost image will have the field-of-view and spatial resolu-
tion that we derived by a more exact calculation in Sect. 3.2, because both there and
here those characteristics are governed by propagation of the pseudothermal source’s
phase-insensitive coherence.

Having seen that the coherence-area approximation can reproduce the pseudo-
thermal ghost-imaging behavior we derived earlier, we return to Eq. (71) to give
that image its two-photon interference interpretation. The field expression inside the
squared magnitude in this equation is the superposition of two terms. In the first, we
have the product of the field at ρρρb on the transmission mask that originates from the
source’s mth coherence area multiplied by the field at ρρρ p on the pinhole detector that
is due to the source’s m′th coherence area. In the second term, we have the physi-
cally indistinguishable situation in which the field at ρρρb from the m′th coherence area

123



978 J. H. Shapiro, R. W. Boyd

Fig. 9 First demonstration of ghost imaging in reflection [19]: a table-top experimental setup using a
pseudothermal source, a CCD array for the high-spatial-resolution reference measurement, and photon
coincidence-counting with the output from the bucket detector; b ghost image of the toy-soldier object
measured in reflection

is multiplied by the field at ρρρ p originating at the source’s mth coherence area. We
have presumed operation at low enough flux that the photocurrent cross-correlation in
Fig. 8 is equivalent to photon-coincidence counting, thus the preceding coherence-area
field contributions can be taken to be due to single photons when thought of quan-
tum mechanically. So, just as we argued from the biphoton analysis of the SPDC case,
these pseudothermal terms can be interpreted as originating from nonlocal two-photon
interference.

5 Other ghost-imaging configurations

Sections 3 and 4 provided a detailed treatment of ghost imaging in transmission with
single-wavelength sources. In the present section we will present briefer develop-
ments of other ghost imaging configurations. We will start with ghost imaging in
reflection, done with a single-wavelength source, focusing on the effects of target-
induced speckle associated with imaging rough-surfaced targets. Here we will only
consider pseudothermal operation, because the quasi-Lambertian nature of rough-
surface reflection places a premium on the use of high-flux sources in standoff-sensing
applications. Standoff sensing over terrestrial paths inevitably encounters atmospheric
turbulence, so we will allow for its random propagation impairments in our treatment.
We then move on to computational ghost imaging, in which the pseudothermal source
is replaced with a deterministic illuminator that permits a ghost image to be formed
using a computed reference field, i.e., with only a bucket detector. In addition to our
theory development, we will also include discussion of recent table-top experimental
work for all three of these topics: ghost imaging in reflection, the impact of turbulence
on ghost imaging, and computational ghost imaging. Finally, we shall return to SPDC
operation to examine the merits of two-wavelength operation for ghost imaging in
transmission.
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5.1 Ghost imaging in reflection for standoff sensing

The prospect that ghost imaging might find useful application as an alternative to a
more conventional laser radar—or other active imager18—for standoff sensing was
significantly increased when Meyers et al. reported the first demonstration of ghost
imaging done in reflection [19]. Their table-top experiment, whose schematic setup
is shown in Fig. 9a, was a lensless, pseudothermal configuration that was operated
at sufficiently low flux that photon coincidence-counting could be employed. The
resulting ghost image of the toy-soldier object is shown in Fig. 9b. This ghost image
was obtained when the source-to-reference (CCD) detector distance z1 equaled the
source-to-object distance z2, so that the identical classical fields emerging from the
beam splitter in Fig. 9a cast identical speckle patterns at these locations, in keeping
with the speckle-correlation interpretation of pseudothermal ghost imaging we have
described for transmissive configurations. It should be noted, however, that Meyers et
al. interpreted their pseudothermal ghost image formed in reflection as being a con-
sequence of two-photon interference, and argued that it could not be explained by
correlations between classical intensity fluctuations. But, as we have shown in Sect. 4,
both explanations are valid descriptions of pseudothermal ghost imaging.

Meyers and Deacon took a second significant step toward ghost imaging as a stand-
off sensor when they explored the vulnerability of reflective ghost imaging to atmo-
spheric turbulence [21]. Atmospheric turbulence refers to the few parts-per-million
spatiotemporal refractive-index fluctuations that accompany turbulent mixing of air
parcels with ∼1 K temperature differences. These fluctuations, occurring on spatial
scales ranging from 10−3 to 102 m, evolve in time and drift with prevailing winds
producing temporal variations on the order of 1–10 ms [47–49]. They have long been
the bane of earth-bound astronomers, and they limit the spatial resolution of laser
radars. Thus it is particularly germane to understand the effect of turbulence on ghost
imaging.

Figure 10 sketches the table-top experimental setup from [21]. The beam-split out-
puts from a pseudothermal source illuminated an “ARL” pattern and an adjacent sheet
of glossy white paper. The reflected light from these two illumination patterns were
collected by different sections of a CCD array that was arranged to provide bucket
detection of the light reflected by the ARL pattern and reference detection of the other
light. Operation was at low flux levels in photon-counting mode, and the ghost image
was obtained by gating the reference arm when photodetection events were registered
by the bucket detector on the signal arm. To create strong turbulence, heating elements
could be inserted at any and all of the locations shown in this figure. A conventional
image of the ARL pattern was also formed by using the CCD’s imaging capability on
the light reflected from the ARL pattern.

Results from the Meyers and Deacon experiments were somewhat surprising.
Figure 11a contains three conventional short-exposure images of the “R” from the
ARL pattern, showing distortions created by the presence of turbulence. The left
image in Fig. 11b shows an ARL ghost image taken without atmospheric turbulence,

18 An active imager is one that provides its own object illumination, rather than relying on ambient light
for this purpose.
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Fig. 10 Table-top experimental setup for probing the sensitivity of reflective ghost imaging to atmospheric
turbulence [21]

Fig. 11 Experimental results from [21]: a three short-exposure conventional images of the “R” from the
ARL pattern in the presence of turbulence; b ghost images taken of the ARL pattern in the absence (left)
and the presence (right) of turbulence

while the right image in that figure shows an ARL ghost image taken in the presence of
turbulence. Because they used turbulence whose strength parameter was as strong as
C2

n = 10−9 m−2/3, Meyers and Deacon concluded that ghost imaging is intrinsically
immune to atmospheric turbulence. This conclusion is at odds with theoretical work
of Cheng [22], who showed that lensless pseudothermal ghost imaging in transmis-
sion suffers from turbulence-limited resolution loss when the atmospheric coherence
length at the source becomes smaller than the source’s intensity radius. Hence it is
incumbent upon us to see whether Cheng’s analysis extends to the reflective case. In
conjunction with such an assessment, we must also confront the fact that most scenes
of interest for standoff sensing are comprised of objects whose surfaces are rough
on the scale of optical wavelengths. Laser light reflected from such surfaces project
speckle patterns [45] akin to those we have noted arise from propagation through
ground-glass diffusers. Hence target-induced speckle must be included—in addition
to atmospheric turbulence—in any consideration of ghost imaging for standoff sens-
ing. Joint consideration of reflective ghost imaging with rough-surfaced objects and
atmospheric turbulence will comprise the rest of this subsection, where we will draw
upon theoretical results from [23,24].

Our theoretical development will assume the pseudothermal lensless configuration
shown in Fig. 12. In this arrangement, the output from a pseudothermal source is
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Fig. 12 Configuration for lensless ghost imaging in reflection using a pseudothermal source with atmo-
spheric turbulence potentially present in all propagation paths

divided by a 50–50 beam splitter. After propagation over an L-m-long atmospheric
path, one of the beam splitter’s output beams illuminates a rough-surfaced object with
field-reflection coefficient T (ρρρ). After propagation over a different L-m-long atmo-
spheric path, the beam splitter’s other output beam illuminates a scanning-pinhole
detector. The light reflected from the object is collected by a bucket detector after
propagation over yet another L-m-long atmospheric path. The bucket and scanning-
pinhole detectors’ photocurrents are then cross correlated to obtain

C(ρρρ p) = 1

TI

TI /2∫

−Ti /2

dt ib(t)i p(t − L/c), (73)

which is supposed to yield a ghost image of the object.
Before proceeding further, several clarifying comments are in order. The first such

comment has to do with our including turbulence on the reference path. We expect
turbulence to be a deleterious influence, at best, on ghost-imaging performance. So
a ghost imager for standoff sensing would very likely use a lens to cast an image
of the far-field reference light onto a scanning pinhole (or a CCD array) inside a
controlled (turbulence-free) environment. Our allowing an outdoor path avoids the
necessity of accounting for ghost-image minification. Moreover, all three atmospheric
paths in Fig. 12 will be taken to be sufficiently separated that their refractive-index
fluctuations are statistically independent. Thus we can turn off the turbulence on the
reference path, if desired, in our analysis to better represent what would be done in
practice. The second point to note concerns Eq. (73), where we have imposed an L/c
propagation delay in the bucket photocurrent so that it is being cross correlated with
the scanning-pinhole photocurrent associated with the same speckle pattern cast by
the pseudothermal source. Finally, we need to provide a statistical characterization for
T (ρρρ). In our treatment of the transmissive case, we took the object to be deterministic;
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for the reflective case we need a random-process characterization. Here we shall use
what is commonly assumed in laser radar analyses [50]: T (ρρρ) is a zero-mean, com-
plex-valued, Gaussian random process whose statistics at illumination wavelength λ0
are completely specified by19

〈T ∗(ρρρ1)T (ρρρ2)〉 = λ2
0T (ρρρ1)δ(ρρρ1 − ρρρ2). (74)

Here, T (ρρρ) is the object’s average intensity-reflection coefficient, which is the quantity
that we will try to image with the Fig. 12 setup.

Paralleling the development in Sect. 3.2, we will use the ensemble average, 〈C(ρρρ p)〉,
to determine the spatial resolution of the reflective ghost image in the presence of tur-
bulence. We shall assume that the scanning-pinhole detector’s photosensitive region is
smaller than the speckle size in its illumination, that the photodetectors are ac coupled
with output bandwidths well in excess of the temporal variations produced by both
the rotating ground glass and atmospheric turbulence. There are three statistically-
independent sources of randomness in the Fig. 12 setup: the pseudothermal light, the
atmospheric turbulence (itself comprised of independent refractive-index fluctuations
on the three propagation paths), and the object’s field-reflection coefficient T (ρρρ). Thus
〈C(ρρρ p)〉 is easily obtained by means of iterated expectation. Specifically, we first find
its value conditioned on knowledge of the turbulence and the object, then we average
over the object statistics, and finally we average over the turbulence statistics. The
details are available in [23,24], so here we will limit ourselves to describing how the
turbulence is accounted for and then present our 〈C(ρρρ p)〉 expression.

Consider propagation over an L-m-long atmospheric path whose input field, at
z = 0, is E0(ρρρ, t), and whose output field, at z = L , is EL(ρρρ

′, t). In the absence
of turbulence, the propagation is governed by the Huygens–Fresnel principle from
Sect. 2.3. In the presence of turbulence, it is characterized by the extended Huygens–
Fresnel principle, see Chap. 5 of [48]:

EL(ρρρ
′, t) =

∫
dρρρ E0(ρρρ, t − L/c)hL(ρρρ

′ − ρρρ)eχ(ρρρ′ρρρ,t)+iφ(ρρρ′,ρρρ,t), (75)

where the free-space Green’s function hL is given by Eq. (31), and the real-valued
random processes χ(ρρρ′,ρρρ, t) and φ(ρρρ′,ρρρ, t) represent the log-amplitude and phase
fluctuations imposed on EL(ρρρ

′, t)when E0(ρρρ, t) is a point-source emission from ρρρ at
time t − L/c. Physically, this says that the presence of turbulence changes the Green’s
function for L m of propagation from hL(ρρρ

′ −ρρρ) to hL(ρρρ
′ −ρρρ)eχ(ρρρ′,ρρρ,t)+iφ(ρρρ′,ρρρ,t). It

turns out that the only turbulence statistic needed to obtain 〈C(ρρρ p)〉 is the correlation

19 Strictly speaking, these statistics do not correctly account for the reflected field’s behavior until suffi-
cient propagation away from the object has occurred that the Central Limit Theorem can be invoked, cf.
our discussion of the use of Gaussian statistics for the pseudothermal source. As a practical matter, the
necessary far-field condition will be satisfied in standoff-sensing applications.
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function20

〈
eχ(ρρρ

′,ρρρ1,t)−iφ(ρρρ′,ρρρ1,t)eχ(ρρρ
′,ρρρ2,t)+iφ(ρρρ′,ρρρ2,t)

〉
= e−D(ρρρ1−ρρρ2)/2 (76)

where

D(ρρρ) ≡ (|ρρρ|/ρT )
5/3 (77)

with C2
n (z) being the turbulence-strength profile along the path from z = 0 to z = L ,

and

ρT ≡
⎛
⎝2.91k2

0

L∫

0

dz C2
n (z)(1 − z/L)5/3

⎞
⎠

−3/5

(78)

being the source-plane coherence length of the turbulence. For the Fig. 12 configura-
tion there will be three such coherence lengths: one for the signal-to-object path, one
for the object-to-bucket path, and one for the reference-to-pinhole path. These will be
denoted ρso, ρob, and ρr p, respectively. All will be assumed to be be much larger than
the pseudothermal source’s ρ0 coherence radius,21 but they may be smaller or larger
than that source’s intensity radius a0.

Under the assumptions we have made, the intensity radius of the light reaching the
object in Fig. 12 will continue to be aL = λ0L/ρ0, so that taking T (ρρρ) to be nonzero
only for |ρρρ| � aL and using the square-law approximation

D(ρρρ) ≈ (|ρρρ|/ρT )
2 (79)

in lieu of Eq. (77), we get the closed-form result

〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2
Ab

L2

ρ2
L

ρ′2
L

∫
dρρρ T (ρρρ)e−|ρρρ−ρρρ p |2/ρ′2

L , (80)

with Ab being the bucket detector’s photosensitive area and

ρ′
L ≡ ρL

√√√√2ρ2
r pρ

2
so + a2

0(ρ
2
r p + ρ2

so)

2ρ2
r pρ

2
so

. (81)

20 Although originally derived via the Rytov (weak-perturbation) approximation, this correlation function
has a more general derivation whose validity includes the strong-perturbation regime, wherein saturated
scintillation occurs [49]. Both derivations use the Kolmogorov 11/3-law spatial spectrum for the refrac-
tive-index fluctuations. Strictly speaking, this limits the validity of Eq. (77) to |ρρρ| between the inner scale
(∼1 mm) and the outer scale (∼10–102 m) of the turbulence.
21 The ground-glass diffuser will make ρ0 comparable to the laser wavelength; atmospheric turbulence
leads to coherence lengths on the order of centimeters.
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Here we see that the average ac-coupled ghost image is proportional to the rough-
surfaced object’s average intensity-reflection coefficient T (ρρρ) convolved with a
Gaussian point-spread function of spatial resolution ρ′

L .
It is instructive to compare Eq. (80) for pseudothermal reflective ghost imaging in

the presence of turbulence to

〈C(ρρρ p)〉 = q2η2 Ap

(
2P

πa2
L

)2 ∫

Ab

dρρρ e−|ρρρ−ρρρ p |2/ρ2
L |T (ρρρ)|2, (82)

which is the corresponding result for pseudothermal transmissive ghost imaging in
the absence of turbulence. The former differs from the latter in three ways. First, it
is imaging T (ρρρ) rather than |T (ρρρ)|2, as expected from our statistical model for the
rough-surfaced object. Second, the quasi-Lambertian nature of reflection from that
rough-surfaced object leads to the Ab/L2 � 1 angular-subtense factor in the reflec-
tive case, representing the fraction of the reflected light that is collected by the bucket
detector. Third, the no-turbulence e−|ρρρ|2/ρ2

L point-spread function is replaced by the
turbulence-degraded point-spread function (ρL/ρ

′
L)

2e−|ρρρ|2/ρ′2
L . It is this third differ-

ence, which was previously found by Cheng [22] for transmissive ghost imaging, that
deserves the most attention.

Equation (81) shows that turbulence between the object and the bucket detector
in Fig. 12 has no effect on the average ghost image. This is a consequence of the
turbulence coherence length for that propagation path being much larger than the
coherence length of T (ρρρ). More importantly, Eq. (81) indicates that turbulence in
the reference-to-pinhole and signal-to-object paths both degrade the reflective ghost
image’s spatial resolution when they become sufficiently small. In particular, if we
assume that ρso = ρr p = ρT , as will be the case for horizontal paths with uniform C2

n
profiles, then we get

ρ′
L

ρL
=
√

1 + a2
0/ρ

2
T ≈
{

1, for ρT � a0

a2
0/ρ

2
T � 1, for ρT � a0.

(83)

Just as Cheng found for the transmissive case, turbulence degrades ghost image reso-
lution when its coherence length is smaller than the source’s intensity radius. Whether
or not this theoretical conclusion contradicts the experiments of Meyers and Deacon
cannot be determined from [21], because these authors did not report the values of the
relevant parameters, viz., their source’s intensity radius and the source-plane turbu-
lence coherence length. In this regard it is worth discussing the recent paper by Dixon
et al. [51], which does report turbulence-degraded imagery for an SPDC experiment—
performed in transmission—in which the relevant turbulence coherence length was
measured.

Dixon et al. used the setup shown in Fig. 13. The SPDC crystal was located at
spatial shift � from the central image plane of two 4 f imaging systems: one for the
signal beam and one for the idler. At the signal-beam image plane there was a one-
dimensional sinusoidal transmission mask, T (x) = cos(km x), of spatial frequency
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Fig. 13 Unfolded configuration for the Dixon et al. table-top experiment [51] testing the sensitivity of
SPDC ghost imaging to turbulence. The signal-beam path is on the right; the idler-beam path in on the left.
The former leads to a one-dimensional sinusoidal image-plane transmission mask followed by a bucket
detector; the latter leads to an image-plane scanning-slit detector

km , followed by a bucket detector. At the idler-beam image plane there was a scan-
ning-slit detector. A heat gun was used to create turbulence in the signal-beam path
between the downconverter and the imaging lens. Assuming that the lens diameters
are large enough that they capture all the light from the SPDC source, and that the
turbulence is confined to a narrow sheet a distance �1 from the SPDC crystal, biphoton
theory predicts that the transmission mask’s

|T (x)|2 = 1 + cos(2km x)

2
(84)

sinusoidal intensity transmission will be ghost-imaged in photon coincidence as

〈C(x)〉 ∝ e−2x2/a2
0 [1 + γ cos(2km)], (85)

where

γ ≡ γ0e−2k2
m (�1−�)2/ρ2

0 k2
0 (86)

gives the fringe visibility, with γ0 being its no-turbulence value, and we have converted
the notation from [51] to match that of the present paper.

Figure 14 plots the measured fringe visibility γ versus the distance �1 between the
SPDC crystal and the turbulence for unshifted (� = 0) and shifted (� = 330 mm)
configurations. As predicted by Eq. (86), the shifted configuration is less sensitive to
turbulence than is the unshifted case, with the former having substantial immunity
when the turbulence is located at or near the central image plane. More importantly,
although the Dixon et al. experiments do not match the Fig. 12 configuration, they
clearly show that ghost imaging is not intrinsically immune to the effects of atmo-
spheric turbulence.
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Fig. 14 Fringe visibility versus crystal-to-turbulence distance �1 obtained by Dixon et al. using the setup
shown in Fig. 13. The blue-circle data is for � = 0 and the red-square data is for � = 330 mm. The
theoretical fits are plotted from Eq. (86) using γ0 = 1 for � = 0, γ0 = 0.65 for � = 330 mm, and the
measured ρ0 = 0.71 mm value. The central image plane is indicated by the vertical red line for the shifted
(� = 330 mm) case (Color figure online)

Fig. 15 Configuration for lensless computational ghost imaging in transmission. Not shown is Eb(ρρρ, t) =
T (ρρρ)Es (ρρρ, t), the field illuminating the bucket detector

5.2 Computational ghost imaging

The basic paradigm in pseudothermal ghost imaging is to use a time-varying (rotating
ground-glass) diffuser to convert a spatially-coherent laser beam into one with low
spatial coherence and moderate temporal bandwidth that, after 50–50 beam splitting,
will cast identical speckle patterns on the object to be imaged and a high-spatial-
resolution reference detector. The ghost image then emerges in the photocurrent cross
correlation between the output from the high-spatial-resolution detector and that from
a single-pixel (bucket) detector which collects light transmitted through or reflected
from the object. In [16] it was argued that the ground-glass diffuser could be replaced
with a spatial light modulator (SLM) whose individual pixels were driven by statisti-
cally-independent noise sources. From there it was easy to extrapolate to the compu-
tational ghost-imaging concept, shown for the transmissive case without turbulence,
in Fig. 15. In this concept, deterministic modulation applied to the SLM’s pixels pro-
duces a classical field ES(ρρρ, t) that results in a computable–from the Huygens–Fresnel
principle—field Es(ρρρ, t) at the transmission mask T (ρρρ). Making use of that computed
field we can cross correlate the ac-coupled output of the bucket detector with
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Fig. 16 Configuration for CS computational ghost imaging of a toy soldier in reflection [21]. The com-
puter uses the known sequence of illumination patterns and the single-photon bucket detections to obtain
the image

ĩ p(t) ≡ qηAp|Es(ρρρ p, t)|2, (87)

to obtain a ghost image. Physically, ĩ p(t) corresponds to the average photocurrent
from a pinhole detector at ρρρ p conditioned on knowledge of its illumination, i.e., the
photocurrent from a real pinhole detector with its shot noise suppressed. Thus if
the SLM produces time-varying |Es(ρρρ, t)|2 patterns covering a radius-aL region with
radius-ρL speckles, we should expect this cross correlation to behave, on average, very
much like the ac-coupled pseudothermal ghost image formed with the two-detector
configuration from Fig. 8.

Computational ghost imaging was first demonstrated by Bromberg et al. [25]. That
group later replaced the correlator in Fig. 15 with a compressive-sensing processor
[26]. Compressive sensing exploits the sparseness of object scenes in an appropri-
ate basis to achieve accurate reconstructions with many fewer samples—in this case
SLM patterns—than a conventional correlator approach, requires.22 Indeed, viewed
this way, computational ghost imaging with compressive sensing (CS) is known and
has been studied in the signal-processing community as the structured illumination
version of the CS single-pixel camera [53].

Meyers and Deacon [21] have pushed beyond the compressive-sensing version of
computational ghost imaging in transmission, by applying the CS approach to image a
toy soldier in reflection, as sketched in Fig. 16. Sample results from their experiments
are shown in Fig. 17. The image on the left was obtained by randomly scanning a single
illumination point across the region containing the toy soldier, whereas the image on
the right was obtained by simultaneous random scanning of three illumination points
across that object region. Because the Fig. 16 processor knew, in both cases, what
object-region points were being illuminated, the image on the left is easily understood
in conventional laser radar terms. In particular, the spatial resolution obtained from a
laser radar depends on both its transmitter and its receiver antenna patterns. A bucket-
detector receiver affords no spatial resolution in the conventional laser radar sense.

22 See [52] for a tutorial overview of compressive sensing.
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Fig. 17 CS computational
ghost images of the toy soldier
obtained using the setup from
Fig. 16. The left image was
obtained with randomly scanned
single-pixel illumination; the
right image was obtained with
randomly scanned three-pixel
illumination

However, when used in conjunction with a narrow-beam transmitter that is aimed at a
known location on the object, the bucket detector’s output provides a measure of the
reflection strength within that small illuminated region. On the other hand, the image
on the right in Fig. 17 is a CS computational ghost image, because individual bucket-
detector outputs do not directly yield reflection-strength information for a single pixel
on the toy soldier.

5.3 Two-wavelength SPDC ghost imaging

For the final ghost-imaging configuration we shall discuss, we return to the SPDC
setup for lensless ghost imaging. Every two-detector (pinhole-plus-bucket) case we
have considered so far has assumed single-wavelength operation. In Sect. 3.1 that
meant our downconversion source was operated at frequency degeneracy; in Sects. 3.2
and 5.1 single-wavelength operation was a natural consequence of signal and refer-
ence light being derived from 50–50 beam splitting of a single randomly-diffused
laser beam. Now we shall address ghost imaging with an SPDC source whose signal
and idler wavelengths are quite disparate. There is good motivation for such consider-
ation. High-spatial-resolution detectors are not available at all wavelengths, including
many in the infrared where atmospheric turbulence and scattering effects can be more
benign than in the visible region. Thus, using a downconversion source whose idler
wavelength has good CCD-array technology and a signal wavelength with desirable
atmospheric propagation characteristics can yield the best of both these worlds. This is
accomplished by keeping the reference (idler) path inside a controlled environment—
using a lens to cast its far-field speckle pattern onto a focal-plane CCD array—and
using the signal light to interrogate the object through an atmospheric propagation
path. Prior work on two-wavelength ghost imaging includes [27–29]. We shall con-
tent ourselves with applying Gaussian-state analysis to determine the field-of-view and
spatial resolution achieved with the two-wavelength lensless SPDC imager shown in
Fig. 18.

For our analysis of the two-wavelength case we shall make the same source assump-
tions as in Sect. 3.1: the downconverter’s signal and idler beam are in a zero-mean,
jointly Gaussian state whose phase-insensitive auto-covariances are given by the
Gaussian-Schell model expressions from Sect. 2.1 and whose phase-sensitive cross-
covariance is given by the low-brightness term (the second term) from Eq. (12). We
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Fig. 18 Configuration for lensless ghost imaging of a transmission mask with a two-wavelength SPDC
source. Not shown is Êb(ρρρ, t) = T (ρρρ)Ês (ρρρ, t) +

√
1 − |T (ρρρ)|2 Êsv (ρρρ, t), the quantum field that illumi-

nates the bucket detector, where Êsv (ρρρ, t) is a vacuum-state field operator needed to preserve commutator
brackets in the presence of transmission loss through the mask T (ρρρ)

will also assume that both the signal and reference paths in Fig. 18 are long enough
that far-field propagation applies at the signal and reference wavelengths, λS and
λR , respectively. Finally, as in Sect. 3.1, we will make the small-Ap assumption and
take the photodetectors to be dc coupled with quantum efficiency η and output filter
bandwidth �B whose reciprocal is much greater than the downconverter’s coher-
ence time T0. It then follows that the ensemble-average photocurrent cross-correlation
is

〈C(ρρρ p)〉 = q2η2Ap

⎛
⎜⎝K(n)

Ê p Ê p
(ρρρ p,ρρρ p)

∫

Ab

dρρρK(n)

Ês Ês
(ρρρ,ρρρ)|T (ρρρ)|2

+ �B T0

4
√

2

∫

Ab

dρρρ |K(p)

Ês Ê p
(ρρρ,ρρρ p)|2|T (ρρρ)|2

⎞
⎟⎠ , (88)

where, using the far-field conditions, we have

K(n)

Ê p Ê p
(ρρρ p,ρρρ p) = 2P

πa2
0

∫
dρρρ1

∫
dρρρ2

e−(|ρρρ1|2+|ρρρ2|2)/a2
0−|ρρρ1−ρρρ2|2/2ρ2

0 eikRρρρ p ·(ρρρ1−ρρρ2)/L R

(λR L R)2
,

(89)

K(n)

Ês Ês
(ρρρ,ρρρ) = 2P

πa2
0

∫
dρρρ1

∫
dρρρ2

e−(|ρρρ1|2+|ρρρ2|2)/a2
0−|ρρρ1−ρρρ2|2/2ρ2

0 eikSρρρ·(ρρρ1−ρρρ2)/L S

(λS L S)2
,

(90)
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and

|K(p)

Ês Ê p
(ρρρ,ρρρ p)|2 =

(
2P

πa2
0

)2√
2

π

a2
0

PT0ρ
2
0

∣∣∣∣
∫

dρρρ1

∫
dρρρ2

×e−(|ρρρ1|2+|ρρρ2|2)/a2
0−|ρρρ1−ρρρ2|2/ρ2

0 e−ikSρρρ·ρρρ1/L S e−ikRρρρ p ·ρρρ2/L R

λS L SλR L R

∣∣∣∣∣
2

, (91)

with kS ≡ 2π/λS and kR ≡ 2π/λR being the wave numbers at the signal and reference
wavelengths.

The task of evaluating the integrals in Eqs. (89)–(91)—and, more importantly,
choosing the path lengths L S and L R to optimize the resulting spatial resolution—is
simplified by imposing the condition λS L S = λR L R , which implies that kS/L S =
kR/L R . Then, defining λL = λS L S = λR L R reduces the integrals in Eqs. (89)–(91)
to those evaluated in Sect. 3.1 if we substitute λL for λ0L , āL = λL/πρ0 for aL ,
and ρ̄L = λL/πa0 for ρL . Furthermore, the comments concerning depth-of-focus
that were made at the conclusion of Sect. 3 guarantee that choosing λS L S = λR L R

affords the best spatial resolution in the Fig. 18 configuration. Thus we conclude that
two-wavelength SPDC ghost imaging yields ∼√

2āL field-of-view in transverse coor-
dinates and ρ̄L spatial resolution. As in single-wavelength SDPC ghost imaging, the
two-wavelength SPDC ghost image is inverted. In short, two-wavelength SPDC ghost
imaging with λS L S = λR L R performs the same as single-wavelength SPDC ghost
imaging at wavelength λm and path length Lm for m = S or m = R.

6 Conclusions

Our long journey through ghost imaging is now at its end. Building on solid foun-
dational knowledge of classical and quantum Gaussian states, semiclassical versus
quantum photodetection, and coherence propagation for phase-insensitive and phase-
sensitive light, we have presented a unified treatment of SPDC and pseudothermal
ghost imaging in lensless far-field operation. Moreover, we have gone beyond anal-
ysis alone by exhibiting two alternative but equally valid physical interpretations for
ghost-image formation—correlations between the speckle patterns illuminating the
high-spatial-resolution (reference) detector and the object to be imaged, and non-
local two-photon interference—thus eliminating any residual controversy regarding
the physics of ghost imaging.

To be specific, our conclusions as to the physics of ghost imaging are as follows.
Pseudothermal ghost imaging can be understood as arising from correlations between
classical speckle patterns cast on the object and the reference detector, or from two-
photon interference between the fields illuminating the bucket and reference detectors.
In particular, the field-of-view, spatial resolution, image contrast, and signal-to-noise
ratio predictions of semiclassical photodetection and quantum photodetection coin-
cide for pseudothermal ghost imaging. Hence we cannot regard the pseudothermal
ghost image as a quantum effect, because quantum theory is not needed for its quan-
titative characterization. For SPDC ghost imaging, on the other hand, the situation
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is different. Here quantum theory is necessary to quantify the resulting performance,
because of the entangled nature of SPDC’s signal and idler. For example, one can show
that Bell inequalities are violated by certain quantum states that can be used to per-
form ghost imaging [54]. Furthermore, SPDC ghost imaging can be can be combined
with matched filtering to accomplish a restricted class of object recognition at the
single-photon level [55]. However, for far-field lensless ghost imaging, the principal
distinction between SPDC and pseudothermal operation is that the former achieves
high contrast in dc-coupled setups whereas the latter does not. One should not con-
clude from the preceding sentence that ac coupling, which suppresses the background
term in the average pseuodothermal ghost image, will eliminate all performance dif-
ferences between classical-state and nonclassical-state ghost imaging: the shot noise
and excess noise from the background term still affect the image signal-to-noise ratio
in ac-coupled setups, see [30].

Finally, in this review we addressed recent extensions to the original ghost imaging
paradigm: ghost imaging in reflection, ghost imaging through atmospheric turbulence,
and two-wavelength ghost imaging. The book is far from closed, however, on ghost
imaging. Its application to standoff sensing has only begun to be considered, see
[23] for a preliminary spatial resolution and signal-to-noise ratio comparison with a
cw laser radar. Furthermore, the connection between computational ghost imaging
and compressive sensing opens up significant pathways for improving the standoff-
sensing performance of ghost imaging. Indeed, a compressive-sensing ghost imaging
in which the sequence of illumination patterns that are employed is adapted, as mea-
surements are made, to maximize information gain would seem to be a natural topic
for future research. Of course, standoff sensing is not the only possible application for
ghost imaging, nor is the lensless, direct-detection configuration the only way to form
ghost images. In particular, the use of higher-order correlations to form ghost images
has been considered [32,33,56,57] as has the use of homodyne detection instead of
direct detection [58]. We feel confident that additional ghost imaging approaches will
continue to be developed in the future.
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