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Abstract Superluminal and slow-light propagation in erbi-
um-doped optical fibers are theoretically modeled. The
pump and signal fields are allowed to be intensity modu-
lated at the same frequency, and propagation effects are in-
cluded in the model. The levels of advancement, delay, and
distortion are determined as functions of system parameters
such as modulation frequency, input pump power, modula-
tion indexes of the pump and signal powers, input signal
power, fiber length, and the relative phase of the pump and
signal modulation. Two methods are analyzed for enhancing
the frequency response while ensuring that distortion values
remain tolerable. The first method assumes no modulation
of the pump wave, although the pump power is adjusted for
each signal modulation frequency. A flat frequency response
for frequencies up to several kilohertz is obtained, although
signal advancements are limited to low values. In the sec-
ond method, the pump power is modulated with a phase that

S. Jarabo (�)
Departamento de Física Aplicada, Facultad de Ciencias,
Universidad de Zaragoza, Pedro Cerbuna, 12, 50009 Zaragoza,
Spain
e-mail: sjarabo@unizar.es
Fax: +34-976-761233

A. Schweinsberg · R.W. Boyd
The Institute of Optics, University of Rochester, Rochester,
NY 14627, USA

N.N. Lepshkin
San Francisco State University, San Francisco, CA 94132, USA

M.S. Bigelow
St. Cloud State University, St. Cloud, MN 56301, USA

R.W. Boyd
Department of Physics, University of Ottawa, Ottawa, Ontario,
Canada

needs to be controlled with respect to that of the signal. Ad-
vancements and delays are increased by this procedure, and
distortion values remain tolerable. The frequency response
is not made worse for advancements and it is improved for
delays. Moreover, absorption need not accompany slow light
for this method.

1 Introduction

Superluminal and slow-light propagation are two very inter-
esting phenomena that have been observed and measured in
various material systems [1–19]. Moreover, from an appli-
cations perspective, the active control of the group velocity
of light can be a key issue in the development of new tech-
nologies for optical communications, such as optical buffers
for all-optical routing, optical memories, and optical sig-
nal processing [20–27]. In addition, other new applications
are emerging in image processing [28] and interferometry
[29, 30].

Since they offer very long interaction lengths and ex-
tremely high optical intensities, optical fibers offer a very ef-
fective material for all-optical control of the group velocity.
Specifically, superluminal and slow-light propagation with
long delays and advancements have been experimentally
demonstrated in erbium-doped optical fibers [14, 31–37].
These experiments have shown that it is possible to actively
control the group velocity by varying the input pump power.
Recently, it has been experimentally demonstrated [38] that
the group velocity can be also controlled by pump modula-
tion. Nevertheless, although a signal waveform can be easily
advanced or delayed by employing erbium-doped fibers, this
waveform will always show some level of distortion [14].
As signal distortion is a key concern in many applications,

mailto:sjarabo@unizar.es


718 S. Jarabo et al.

it is necessary to obtain procedures to control signal ad-
vancements/delays while keeping distortion levels tolerable
[35, 39].

Although it is possible to study and analyze slow and
superluminal propagation at a purely experimental level,
it is nonetheless important to develop accurate theoretical
models that allow one to predict physical effects, optimize
and analyze new experiments, and design applications. In
Ref. [14], the authors earlier presented a theoretical expla-
nation of slow- and fast-light effects based on some previous
work [31, 33, 38] on the amplification of modulated signals
in erbium-doped fibers. Nevertheless, these predictions can
be improved by taking into account a more accurate analytic
model that included propagation effects for the pump and
signal waves [40]; experimental verification of this model
has been presented in the literature [41, 42].

In this paper, superluminal and slow-light propagation in
erbium-doped optical fibers is analyzed by a simple and ac-
curate theoretical model that allows for modulation of the
pump and signal power. Pump and signal distortions can also
be determined through use of this model. Furthermore, it can
be employed to analyze optimization procedures of advance-
ments and delays of a modulated signal power while keep-
ing a tolerable level of signal distortion. To ensure reliable
results, we verify the parameters of our model by fitting our
numerical results to the values reported in the measurements
of Ref. [14].

2 Theoretical model

We assume that the erbium ions are described by the energy-
level scheme shown in Fig. 1, and that light fields created by
amplified spontaneous emission do not influence the level
populations. Erbium ions are pumped at a rate Wp from
ground state up to level 3. From this level, erbium ions
decay essentially instantaneously to the upper level of the
laser transition, and therefore level 3 can be considered to
be empty. The relative populations of the ground and excited
levels (n1 and n2 respectively) can be determined by means
of rate equations taking into account the absorption, stimu-
lated emission, and spontaneous emission rates (Wa,We and
A21 = 1/τ , respectively, τ being the lifetime of the laser
transition). The pump and signal rates depend on the pump
and signal powers within the erbium-doped fiber (EDF), as
also shown in Fig. 1. The pump power is denoted by Pp . The
signal power can be either forward propagating or backward
propagating and it is denoted by P +

s or P −
s , respectively.

Therefore, the level populations can be determined in terms
of the pump and signal powers. It is well known [40–42] that
these powers evolve along the fiber in accordance with the
equations

1

Pp(z, t)

∂Pp(z, t)

∂z
= −γpn1(z, t), (1)

Fig. 1 Energy-level scheme for EDF amplifiers: Wp = pump rate,
Wa = absorption rate, We = stimulated emission rate, τ = erbium-ion
lifetime, Pp = pump power, P ±

s = forward and backward propagating
signal powers, L = EDF length

1

P ±
s (z, t)

∂P ±
s (z, t)

∂z
= ±[

γe − (γa + γe)n1(z, t)
]

= ±g(z, t), (2)

where γp is the absorption coefficient at the pump wave-
length, γa and γe are absorption and stimulated emission
coefficients at the signal wavelength, and g(z, t) is the gain
coefficient. These equations illustrate that, when the signal
power is modulated, it induces a modulation of populations
and, therefore, of the pump power as well, even if the in-
jected pump power does not initially depend on time.

We assume now that the pump and signal powers are
weakly modulated as cosine functions according to

P ±
s (z, t) = P ±

s (z)
{
1 + r±

s (z) cos
[
ωmt + ϕ±

s (z)
]}

, (3)

Pp(z, t) = Pp(z)
{
1 + rp(z) cos

[
ωmt + ϕp(z)

]}
, (4)

where ωm is the modulation frequency and small modula-
tion indexes are assumed (r±

s (z) � 1 and rp(z) � 1) so that
perturbations only up to the first order need be considered.
Although notation “±” is maintained, we assume that the
signal power is either forward or backward propagating (but
not both simultaneously). Finally, as the populations must
also be modulated, we assume that

n1(z, t) = n1(z)
{
1 + rn(z) cos

[
ωmt + ϕn(z)

]}
, (5)

with rn(z) � 1, and n1(z) being the steady-state relative
population of the ground energy-level, which can be ex-
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pressed as

n1(z) = We(z) + A21

ωc(z)
=

1 + γe

γp

νp

νs

P±
s (z)

P th
p

1 + Pp(z)

P th
p

+ γa+γe

γp

νp

νs

P±
s (z)

P th
p

, (6)

with

ωc(z) = Wp(z) + Wa(z) + We(z) + A21

= 1

τ

[
1 + Pp(z)

P th
p

+ γa + γe

γp

νp

νs

P ±
s (z)

P th
p

]
, (7)

and

P th
p = hνp

τ

AdNT

γp

, (8)

since the temporal evolution of the relative population of the
ground level can be expressed as

∂n1(z, t)

∂t
= [

We(z, t) + A21
] − [

Wp(z, t) + Wa(z, t)

+ We(z, t) + A21
]
n1(z, t). (9)

Although it is not a precise definition, the quantity P th
p

is usually considered to be the threshold pump power of the
amplifier, that is, it gives the minimum value of the pump
power that must be applied to produce amplification.

Defining the complex functions

ξq(z) = rq(z) exp
[
iϕq(z)

]
, q = p,n, (10)

substituting Eqs. (4) and (5) into Eq. (1), and neglecting
second-order terms, we find that

dξp(z)

dz
= −γpn1(z)ξn(z). (11)

In the same way, substituting now Eqs. (3) and (5) into
Eq. (2) and neglecting second-order terms again, we find
that

dξ±
s (z)

dz
= ∓(γa + γe)n1(z)ξn(z), (12)

with

ξ±
s (z) = r±

s (z) exp
[
iϕ±

s (z)
]
. (13)

Comparing Eqs. (11) and (12), we see that the derivatives
are related by

dξp(z)

dz
= ± 1

β

dξ±
s (z)

dz
, β = γa + γe

γp

. (14)

Then, by integrating this equation from 0 to z if the signal
power is forward propagating or from z to L (EDF length)

if the signal power is backward propagating, one finds that
ξ±
s (z) and ξp(z) are related by

ξ+
s (z) − ξ+

s (0) = β
[
ξp(z) − ξp(0)

]
, (15)

ξ−
s (z) − ξ−

s (L) = −β
[
ξp(z) − ξp(L)

]
. (16)

On the other hand, ∂n1(z, t)/∂t can be obtained by dif-
ferentiation of Eq. (5) or by means of substituting Eqs. (3),
(4), and (5) into Eq. (9) and neglecting second-order terms.
Therefore, equating both expressions and taking into ac-
count Eqs. (1), (2), (11), and (7), it is obtained that

ξn(z) = 1

γpn1(z)

ωc(z) − iωm

ω2
c (z) + ω2

m

×
[
dωp(z)

dz
ξp(z) ± 1

β

dωs(z)

dz
ξ±
s (z)

]
, (17)

provided that the signal power is either forward or backward
propagating, and where

ωp(z) = 1

τ

Pp(z)

P th
p

and ωs(z) = νp

νs

β

τ

P ±
s (z)

P th
p

. (18)

Finally, by substituting Eq. (17) into Eq. (12), we find
that

dξ±
s (z)

dz
= −ωc(z) − iωm

ω2
c (z) + ω2

m

×
[
dωs(z)

dz
ξ±
s (z) ± β

dωp(z)

dz
ξp(z)

]
. (19)

Thus, ξ±
s (z) and ξp(z) can be determined by solving

Eqs. (15), (16), and (19). Therefore, rp(z), r±
s (z), ϕp(z), and

ϕ±
s (z) can be known according to Eqs. (10) and (13). This

set of equations is in agreement with, and generalizes re-
sults reported by, other authors [31, 33]. However, to solve
them, it is necessary to know Pp(z) and P ±

s (z) in order
to determine their derivatives (Eqs. (1), (2), and (6)), and
ωc(z),ωp(z),ωs(z) (Eqs. (7) and (18)) and their derivatives.

The pump and signal powers along the fiber can be deter-
mined by solving the following set of equations:

γpz + ln

[
Pp(z)

Pp(0)

]
+ Pp(z) − Pp(0)

P th
p

+ νp

νs

P +
s (0)

P th
p

[
G(z) − 1

] = 0, (20)

γpz + ln

[
Pp(z)

Pp(0)

]
+ Pp(z) − Pp(0)

P th
p

+ νp

νs

P −
s (L)

P th
p

[
G(z) − 1

]G(L)

G(z)
= 0, (21)

lnG(z) = γez + β ln

[
Pp(z)

Pp(0)

]
, (22)
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Fig. 2 Signal fractional
advancement as a function of z

(forward-propagating signal,
solid lines) or L − z

(backward-propagating signal,
dotted lines): (a) the input pump
power is not modulated; (b) the
input pump power is modulated
with a modulation index
rp = 0.1 and a phase ϕp = π

which are deduced [40] from Eqs. (1), (2), and (6), and
where G(z) is the gain at a point z of the EDF. P ±

s (z) are
related to G(z) by means of

P +
s (z) = P +

s (0)G(z), P −
s (z) = P −

s (L)G(L)/G(z).

(23)

Considering Eqs. (20), (21), and (22) at z = L, it is ver-
ified that neither the amplifier gain nor the remaining pump
power depends on the amplification scheme.

Finally, defining the threshold pump power as the pump
power required to achieve amplification, we find by impos-
ing the condition G(L) = 1 in Eqs. (20), (21), and (22) that
the threshold pump power is given by

Pthreshold = P th
p

γa

β
L

[
1 − exp

(
−γe

β
L

)]−1

. (24)

This is a general result that does not depend on the
amplification scheme. (By amplification scheme we mean
whether the signal wave is forward or backward propagat-
ing.) For short lengths of fiber, this result shows that

Pthreshold ≈ P th
p

γa

γe

≈ P th
p , (25)

but if the fiber length is long enough, we find that

Pthreshold ≈ P th
p

γa

β
L, (26)

and Pthreshold can be significantly greater that P th
p . Neverthe-

less, P th
p is a suitable approximation for the threshold power

in many practical cases and this simplification is very use-
ful, since P th

p depends neither on the signal wavelength nor

on the fiber length. Moreover, P th
p is normally used as a ref-

erence power and pump powers are classified as weak or
strong by a comparison with it.

Taking into account that the gain of the EDF does not
depend on the amplification scheme, it seems reasonable
to think that phases and modulation indexes are also inde-
pendent of the amplification scheme. In fact, this property
has been numerically verified for many cases. Although the
signal phase and signal modulation index evolve along the
fiber in different ways, their values at the ends of the EDF
are equal for both amplification schemes. To illustrate this
point, some examples are shown in Figs. 2 and 3. These nu-
merical results have been computed assuming the following
typical values for the EDF: γp = 0.25 m−1, γa = 0.4 m−1,
γe = 0.6 m−1 (β = 4), τ = 10.5 ms, and P th

p = 3.5 mW.
Furthermore, λs = 1.55 µm, λp = 0.98 µm, input pump
power = 500 mW, input signal power = 1 mW, signal mod-
ulation index = 0.1, fiber length = 30 m, and modulation
frequency = 500 Hz. In Fig. 2, the signal fractional advance-
ment is graphed as a function of z (forward-propagating sig-
nal) or L − z (backward-propagating signal) for two situa-
tions: (a) the input pump power is not modulated and (b) the
input pump power is modulated with a modulation index
rp = 0.1 and a phase ϕp = π . In Fig. 3, the signal modula-
tion index is shown as a function of z (forward-propagating
signal) or L−z (backward-propagating signal) for the situa-
tions: (a) the input pump power is not modulated and (b) the
input pump power is modulated with a modulation index
rp = 0.1 and a phase ϕp = π/2. This lack of dependence
on amplification scheme has been experimentally verified
by employing a setup similar to that of Ref. [14].

Therefore, and considering that the phases and modula-
tion indexes at the output of the EDF should be the most im-
portant predictions of our theoretical model, this study can
be carried out working only with forward-propagating sig-
nal power, although then its evolution along z is lost. Thus,
the superscript ‘±’ can be suppressed, since henceforth a
forward-propagating signal will be always assumed.
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Fig. 3 Signal modulation index
as a function of z

(forward-propagating signal,
solid lines) or L − z

(backward-propagating signal,
dotted lines): (a) the input pump
power is not modulated; (b) the
input pump power is modulated
with a modulation index
rp = 0.1 and a phase ϕp = π/2

Substituting Eqs. (10) and (13) into Eqs. (15) and (19),
and defining the parameters

�ϕq(z) = ϕq(z) − ϕs(0), q = s,p, (27)

dq(z) = rq(z)/rs(0), q = s,p, (28)

we find that the following coupled differential equations are
obtained:

d

dz
�ϕs(z) = 1

ω2
c (z) + ω2

m

{
dωc(z)

dz
ωm − 1

ds(z)

dωp(z)

dz

× [
ωmζR(z) + ωc(z)ζI (z)

]}
, (29)

d

dz
ds(z) = 1

ω2
c (z) + ω2

m

{
dωp(z)

dz

[
ωc(z)ζR(z) − ωmζI (z)

]

− dωc(z)

dz
ωc(z)ds(z)

}
. (30)

In these equations, we have defined

ζR(z) = cos
[
�ϕs(z)

]

− βdp(0) cos
[
�ϕs(z) − �ϕp(0)

]
, (31)

ζI (z) = sin
[
�ϕs(z)

]

− βdp(0) sin
[
�ϕs(z) − �ϕp(0)

]
. (32)

By solving these equations at z = L, the delay/advance-
ment of the signal power (�ϕs ) and the distortion of the
signal power (ds ) can be quantified. It is necessary to point
out that if there is no distortion, then ds = 1 and, therefore,
ds = 0 dB. Moreover, this definition of the signal distortion
assumes a sinusoidal input signal and would be equivalent to
the amplitude response of the modulated signal power. How-
ever, if another kind of input signal is employed, it would
be necessary to quantify signal distortion with other defini-
tions, as in Ref. [35], where the authors analyze pulses as
input signal considering broadening and pulse skew.

With �ϕs and ds values, the additional parameters �ϕp

(pump phase with regard to the phase of the coupled signal
power) and dp (pump modulation index with regard to the
modulation index of the coupled signal power) can be also
determined at z = L, taking into account that

dp(L) exp
[
i�ϕp(L)

]

= dp(0) exp
[
i�ϕp(0)

]

+ 1

β

{
ds(L) exp

[
i�ϕs(L)

] − 1
}
. (33)

To sum up, distortion and delay/advancement of the
signal and pump powers can be computed as functions
of L, Pp(0), Ps(0), dp(0), �ϕp(0), and ωm by solving
Eqs. (29), (30), and (33), together with Eqs. (1), (2), (6), (7),
(18), (20), (22), (31), and (32). It is not necessary to take into
account �ϕs(0) or ds(0), since �ϕs(0) = 0 and ds(0) = 1,
by definition, and obviously, neither rs(0) nor ϕs(0) influ-
ences the results.

In general, closed-form solutions cannot be found for
the proposed model. Although the results shown in follow-
ing sections are numerically obtained, analytic equations for
some particular cases are also included.

3 Results for no modulation of the pump power

In spite of losing generality with regard to our proposed
model, the case of using no modulation of the pump field is
quite significant because experimental measurements have
usually been reported for such a case. It is necessary to
clarify that, even though the pump power injected at z = 0
is not modulated, the modulation of the signal induces a
modulation of populations along the EDF and, therefore, of
the pump power as well. In Fig. 4, the frequency depen-
dence of the pump advancement/delay is shown for a sig-
nal power of 1 mW coupled into a 30-m-long EDF. The
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Fig. 4 Frequency and pump
power dependence of the pump
fractional advancement/delay
(with regard to the input signal
modulation). Although the
pump power coupled at z = 0 is
not modulated, the modulation
of the signal induces modulation
of the pump power along the
EDF. The pump power is
advanced provided that it is
higher than
Pthreshold = 10.62 mW
(computed by Eq. (24))

Fig. 5 Frequency and pump
power dependence of the pump
distortion. Although the pump
power at z = 0 is not modulated,
the modulation of the signal
induces modulation of the pump
power along the EDF

pump power is advanced provided that it is higher than
Pthreshold = 10.62 mW (computed by Eq. (24)). If the pump
power is exactly Pthreshold, then a step in the phase of the
modulation of π radians is observed. As the modulation fre-
quency is increased, fractional advancements vary from 0.5
(π ) to 0.25 (π/2), while fractional delays vary from 0 to
−0.25 (−π/2). Moreover, the frequency dependence of the
pump distortion is shown in Fig. 5 for several pump pow-
ers. This modulation induced on the pump power has been
also verified by measurement in a setup similar to the one of
Ref. [14].

If no modulated pump power is coupled into the EDF, the
main features of signal advancement/delay and signal distor-
tion can be easily analyzed as a function of the modulation
frequency, the pump power, and the EDF length, obtaining
solutions in agreement with reported experimental results
[14, 36, 37]. As it can be seen in Fig. 6, the sign of the sig-
nal phase variation does not depend on the frequency modu-
lation ωm. If the coupled pump power is exactly Pthreshold

(defined by Eq. (24)), then �ϕs(L) = 0, and neither ad-
vancements nor delays would be observed. This condition
can be analytically deduced by imposing in Eqs. (29)–(32)

the condition that ds(z) = 1 and �ϕs(z) = 0 (that is to say,
the signal power does not experiment any effect), and also
that the coupled pump power is not modulated (dp(0) = 0).
Then, taking into account Eqs. (7) and (18), the condition
G(L) = 1 should be accomplished and, in consequence, the
coupled pump power should be exactly Pthreshold. Thus, it is
necessary to couple pump powers greater that this threshold
value to obtain advancements of the signal power.

On the other hand, if ωm → ∞ or ωm → 0, then
�ϕs → 0. Therefore, �ϕs must always have a maximum
(for advancements) or a minimum (for delays) at some mod-
ulation frequency. As the pump power increases, this max-
imum/minimum shifts towards higher modulation frequen-
cies, as can be clearly appreciated in Fig. 6. The greatest
delays are obtained at low frequencies (25 Hz, if no pump
is coupled) because the erbium lifetime is very long. How-
ever, the greatest advancements can be obtained at much
higher frequencies (up to 15 kHz) provided that the in-
put pump power is high enough. Moreover, the fractional
advancement at the optimal frequency can be maximized
by selecting the proper pump power for each length of the
EDF.



Theoretical model for superluminal and slow light in erbium-doped optical fibers 723

Fig. 6 Frequency and pump
power dependence of the signal
fractional advancement/delay.
The pump power coupled at
z = 0 is not modulated. If the
pump power is equal to
Pthreshold = 10.62 mW
(computed by Eq. (24)), the
signal phase does not change

Fig. 7 Signal fractional
advancement as a function of
modulation frequency for
several lengths of the EDF. The
input pump power is not
modulated

Fractional advancements of the signal are shown in Fig. 7
for several EDF lengths for 1 W pump power. Advance-
ment values become greater as the length increases. Fur-
thermore, a wider and flatter frequency response is ob-
served. Unfortunately, its growth rate becomes slower as
the length increases, and it is not worthwhile to use fibers
longer than approximately 50 m. Moreover, it has been
verified numerically that �ϕs always falls between −π/2
and +π/2, corresponding to fractional delays or advance-
ments of 0.25. In fact, the limiting value of the fractional
advancement (0.25) is practically obtained in Fig. 7. How-
ever, to obtain fractional delays near 0.25, it would be nec-
essary to employ very long samples of unpumped EDF
(hundreds of meters) and a high signal power (tens of
mW), as can be seen in Fig. 8. If the signal power is high
enough, greater delays are obtained for modulation frequen-
cies around 200 Hz, which are quite higher than 1/τ (typi-
cally 15 Hz).

This behavior of delays for an unpumped EDF can also
be analytically demonstrated in this particular case since
Eqs. (29) and (30) provide the following closed-form solu-

tions to �ϕs and ds :

�ϕs(L) = arctan

[
ωc(L)

ωm

]
− arctan

[
ωc(0)

ωm

]
, (34)

ds(L) = ln

√
ω2

c (0) + ω2
m

ω2
c (L) + ω2

m

. (35)

Taking into account that, if the EDF is unpumped, the
signal power is always attenuated, and considering Eqs. (7)
and (34), it is seen that there is a maximum phase variation
given by

�ϕs,max = π

2
− 2 arctan

√
ωc(0)

ωc(L)
, (36)

at the modulation frequency

ωmax = √
ωc(0)ωc(L). (37)

As the signal power is attenuated, one finds that ωc(0) ≥
ωc(L), and therefore the signal delays cannot be greater than
π/2.



724 S. Jarabo et al.

Fig. 8 Signal fractional delays
as a function of modulation
frequency for several values of
the input signal power. The EDF
length is 200 m, except for the
coupled signal power of 50 mW
(the EDF length is 400 m)

Fig. 9 Frequency and pump
power dependences of the signal
distortion. The pump power
coupled at z = 0 is not
modulated

Although quite large advancements/delays of the signal
power can be obtained by modulation at a suitable fre-
quency, it is also necessary to analyze the signal distortion,
which is as important as signal advancement/delay. In fact,
advancing or delaying signal power is pointless if the output
signal is excessively distorted.

The dependence of the distortion on the modulation fre-
quency is shown in Fig. 9 for various pump powers. In
this figure it is clearly seen that the signal could be so
strongly distorted that it would be useless for any applica-
tion, mainly for low frequencies, since ds is much greater
(Pp < Pthreshold) or much lower (Pp > Pthreshold) than unity.
As the signal power is less distorted as the modulation fre-
quency grows, it is necessary to modulate with high fre-
quencies in order to reduce the signal distortion, although
then signal advancements/delays are dramatically dimin-
ished.

As it is not possible to simultaneously maximize frac-
tional advancements/delays while minimizing distortion, we
must accept smaller fractional advancements/delays if we

require that distortion values be held below a suitable level.
Thus, it is necessary to reach a compromise between these
two requirements.

Thus, we should optimize the signal advancement by se-
lecting a suitable pump power at each modulation frequency,
but require always that distortion values be held lower than
some maximum tolerable value. Taking into account the ex-
perimental results of Ref. [14], a distortion value lower than
2 dB can be estimated as tolerable. In this procedure, it is
necessary to consider that the pump power is always lim-
ited to a realistic maximum value (currently, 10 W can be a
suitable choice).

As an example, in Fig. 10, optimal fractional advance-
ments are shown for several values of the available pump
power, considering a 50-m-long EDF (in agreement with re-
sults of Fig. 7) and assuming distortion values lower than
1 dB. Up to some maximum frequency, the higher the modu-
lation frequency, the greater the optimal fractional advance-
ment, although the input pump power must be increased as
well. From this maximum frequency, it would be necessary
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Fig. 10 Maximum fractional
advancement as a function of the
modulation frequency always
keeping distortion values lower
than 1 dB and limiting the pump
power to 30 mW, 300 mW,
10 W, 100 W, and 1 KW

Fig. 11 Maximum fractional
advancement as a function of
the modulation frequency for
different values of the allowable
distortion (ds = 0.2,0.5,1,2,
and 3 dB) and imposing a
limited pump power (100 W)

to inject a pump power greater than 10 W, but this is not
possible because the available pump power is limited and
in consequence the optimized advancement is diminished.
If the available pump power were 10 W, fractional advance-
ments slightly greater than 0.1 would be obtained from 2 to
200 kHz, with a very flat frequency response. If the avail-
able pump power were much higher (1 KW), this frequency
range could be increased up to 25 MHz. The frequency
response would be very flat, although fractional advance-
ments would not be improved. To obtain significant signal
advancements at higher frequencies, the input pump power
required would be enormous. Were such a high pump power
actually used, we would have to generalize this theoretical
model in order to include other nonlinear effects.

Of course, maximum fractional advancements can be
larger if we permit a greater amount of signal distortion, as is
shown in Fig. 11. Thus, fractional advancements grow up to
0.14 and 0.17 for allowable distortion values of 2 and 3 dB,
respectively. Nevertheless, although frequency responses are
always very flat, frequency ranges are slightly narrower as
distortion values are increased: 5, 2 and 1 MHz for 0.2, 1
and 3 dB, respectively.

4 Enhanced results by modulating the pump power

In the last paragraph a method that enhances the frequency
response of EDF has been discussed, although advance-
ments and delays are limited to quite low values. Neverthe-
less, it is possible to enhance results by modulating the pump
power. In fact, as it is shown in Figs. 12 and 13, by modify-
ing the pump phase (with regard to the signal phase) around
�ϕp = π , the signal power can be advanced or delayed,
reaching fractional advancements/delays near 0.5 along a
wide and flat range of modulation frequencies. Logically,
this frequency range depends on the coupled pump power
and the EDF length. Besides, this pump phase is the most
suitable since the signal power is not distorted (see Fig. 13).
Therefore, it seems clear that this method offers two very
important advantages for future applications: as slow and
fast light can be obtained in an amplified signal (slow light
and absorption are not necessarily associated), and the sig-
nal power is weakly distorted.

As can be seen in Fig. 12, this frequency range is limited
by a well-defined modulation frequency where an abrupt
change from delays to advancements appears for some pump
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Fig. 12 Signal fractional
advancement/delay as a function
of modulation frequency for
several values of the phase of
the modulation of the pump.
Both powers have the same
modulation index (dp = 1)

Fig. 13 Signal distortion as a
function of modulation
frequency for several different
values of the phase of the pump
modulation. Both powers have
the same modulation index
(dp = 1)

phase values. This modulation frequency depends on the
coupled pump power, on the EDF length, and the pump
phase.

If the EDF sample is too short, fractional advance-
ments/delays always are lower, although it is possible to
advance or delay the signal power by modifying the pump
phase, as it can be seen in Fig. 14. However, if the sample
is long enough, this transition becomes a sharp change for
pump phases near π . In fact, the value of the pump phase
approaches π as the EDF length is increased.

In order to verify that this sudden transition is not a
mathematical trick, its evolution under slight changes of the
pump phase is analyzed. As shown in Fig. 15, although the
transition from delays to advancements as a function of the
modulation frequency can be smooth, it can be made pro-
gressively sharper by slight changes of the pump phase un-
til it turns into a discontinuity. In this case, the disconti-
nuity is produced at a well-defined modulation frequency
(νd = 8.138 kHz) by a pump phase of −0.51π , and there is
a 2π change in the signal phase. This modulation frequency
matches up with the value of ωc(L)/(2π). This result has
been numerically checked for other pump powers (200 mW,

500 mW, 1 W and 5 W) and lengths (20, 30 and 50 m).
Moreover, the discontinuity always appears for the pump
phases from −0.51π to −π .

This interesting behavior is worthy of a more detailed
analysis to understand its main causes. It is difficult to ex-
plain since populations are modulated by the pump power
and the amplified signal power, and this modulation also
influences the dynamics of both powers. Nevertheless, the
explanation should be related to the amplitude responses of
the signal power and the ground level. The modulation in-
dex, rn(z), and the phase of the ground-level population,
ϕn(z), can be determined by differentiating Eq. (13) with
regard to z and taking into account Eqs. (10) and (12). As
can be appreciated in Fig. 13, the amplitude response of
the output signal power changes only if the modulation fre-
quency is around νd . If the pump phase is positive, then
this response is greater than unity. However, if the pump
phase is negative, it is lower than unity and it is even zero
at νd if �ϕp(0) = −0.51π . The amplitude response of the
ground level population as a function of the modulation
frequency is displayed in Fig. 16 for several values of the
pump phase. This response does not depend on the sign of
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Fig. 14 Signal fractional
advancement/delay as a function
of the phase of the pump
modulation for several different
values of the EDF length

Fig. 15 Transition from
delayed to advanced signal for
several pump phases around
−0.5π . �ϕp = −0.51π

(circles), −0.504π

(triangles),−0.5π (squares),
and −0.45π (diamonds)

Fig. 16 Modulation index of
the ground-level population as a
function of the modulation
frequency for several values of
the pump modulation phase.
Note that the results do not
depend on the sign of the pump
phase. Its minimum and
maximum values are always
found if the pump phase is 0
or π , respectively, and it has
always a maximum for
modulation frequencies
around νd

the pump phase. Its minimum and maximum values are al-
ways found if the pump phase is 0 or π , respectively, and
it has always a maximum (like a resonance) for modulation
frequencies around νd . In order to complete this analysis,

both responses and the output signal advancement/delay as
functions of the input pump phase can be seen in Figs. 17
and 18 for three significant modulation frequencies: 10 Hz
(very low frequency), 8.3 kHz (slightly greater than νd ) and



728 S. Jarabo et al.

Fig. 17 Dependence of the
signal distortion (black lines)
and of the modulation index of
the ground-level population
(gray lines) on the phase of the
pump intensity modulation for
three significant modulation
frequencies. The pump phase of
−0.51π is marked because the
discontinuity of the signal
advancement/delay is found for
pump phases from −0.51π to
−π

Fig. 18 Dependence of the
signal advancement/delay on the
phase of the pump modulation
for the three modulation
frequencies considered in
Fig. 17

32 kHz (much greater than νd ). Modulating at low frequen-
cies (10 Hz), the amplitude response of the signal has a
parabolic profile, which is maximum at �ϕp(0) = 0 and
minimum at �ϕp(0) = ±π . If �ϕp(0) = 0, the population
response is minimum and then the signal advancement/delay
is always zero. Besides, the signal advancement/delay is lin-
early growing with regard to the pump phase. Apparently,
if the modulation frequency is near νd , the signal response
and the signal advancement/delay seem to strongly change
their behavior. However, taking into account that both func-
tions are periodic, it can be seen that their behavior is not
so different. In Figs. 17 and 18, it would be sufficient to
show both functions for a 2π -period from −0.5π to 1.5π

to verify that the signal advancement/delay is linearly grow-
ing with regard to the pump phase and the response signal
has again a shifted parabolic profile, reaching its maximum
value for a pump phase of 0.5π , and its values vary in a
much wider range, from 0 to 1.4. Therefore, as the mod-
ulation frequency increases, the discontinuity of the signal

advancement/delay is shifted to higher values of the pump
phase, from −π to −0.51π . However, if the modulation fre-
quency is much greater than νd , the amplitude response of
the energy-level population decreases fast and a clear change
is produced. The signal response is again a parabola (max-
imum value at 0.5π ) provided that the pump phase is pos-
itive, but it becomes an inverted parabola (minimum value
at −0.51π ) if the pump phase is negative. Then, the sig-
nal advancement/delay is always positive and it gives up be-
ing a linearly growing function. Finally, it is interesting to
point out that the signal advancement/delay always presents
a slight deviation of the linear growing (a shallow hole) at
0.45π , near the maximum of the amplitude response of the
signal power.

In Figs. 12–18, the condition dp(0) = 1 is always im-
posed. Taking into account the behavior shown in Figs. 19
and 20, it seems quite clear that pump and signal powers
should have the same modulation index (dp(0) = 1), in or-
der to enhance the frequency response for signal advance-
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Fig. 19 Signal fractional
advancement as a function of
modulation frequency for
several different pump
modulation indexes. The pump
phase at z = 0 is �ϕp = π

Fig. 20 Distortion of the signal
as a function of modulation
frequency for several different
modulation indexes of the
pump. The phase of the pump
modulation at z = 0 is �ϕp = π

ments/delays and to ensure that the signal power is not af-
fected by distortion.

On the other hand, in order to analyze how the pump
power influences the modulation frequency where the transi-
tion from delays to advancements is obtained, the condition
ds(z) ≈ 1 must be imposed on Eqs. (29) and (30). Then,

d

dz
�ϕs(z) = dωc(z)

dz

ζI (z)

ωmζI (z) − ωc(z)ζR(z)
, (38)

and taking into account that Eqs. (31) and (32) can be rewrit-
ten as

dζR(z)

dz
= −ζI (z)

d

dz
�ϕs(z), (39)

dζI (z)

dz
= ζR(z)

d

dz
�ϕs(z), (40)

then Eq. (38) can be expressed as

d

dz

[
ωmζR(z) + ωc(z)ζI (z)

] = 0. (41)

By integrating this equation from z = 0 to z = L and sub-
stituting again Eqs. (31) and (32), it is obtained that

{[
ωmζR(0) + ωc(L)ζI (0)

]
tan

[
�ϕs(L)/2

]

+ ωmζI (0) − ωc(L)ζR(0)
}

sin
[
�ϕs(L)

]

= [
ωc(L) − ωc(0)

]
ζI (0), (42)

with

ζI (0) = βdp(0) sin
[
�ϕp(0)

]
,

ζR(0) = 1 − βdp(0) cos
[
�ϕp(0)

]
.

(43)

If �ϕp(0) = π , the following solution is found for
Eq. (42):

�ϕs(L) = π − 2 arctan

[
ωm

ωc(L)

]
. (44)
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Fig. 21 Signal fractional
advancement as a function of
modulation frequency for
several different pump powers.
The pump phase at z = 0 is
�ϕp = 0.99π

Fig. 22 Signal fractional
advancement/delay as a function
of modulation frequency for
several values of the pump
powers. The phase of the pump
modulation at z = 0 is
�ϕp = 1.01π

Considering now that dp(0) = 1 and �ϕp(0) = (1 + ε)π

(with |ε| � 1), Eq. (42) can be approximately solved as

�ϕs(L) = −π − 2 arctan

[
ωm

ωc(L)
− β

1 + β
επ

]
,

if
ωm

ωc(L)
<

επβ

1 + β
, and

�ϕs(L) = π − 2 arctan

[
ωm

ωc(L)
− β

1 + β
επ

]
,

otherwise.

(45)

Thus, if the pump phase is slightly lower than π (ε ≤ 0),
then the signal power is advanced. Otherwise, it will be de-
layed if the pump phase is slightly higher than π (ε > 0).

On the other hand, the range of modulation frequencies
where advancements/delays are near 0.5 depends mainly on
the coupled pump power and the EDF length, since these
parameters have influence on ωc(L). Basically, the higher
ωc(L), the wider the range of frequencies. As ωc(L) in-
creases as the coupled pump power is raised, the range of
frequencies can be widened by coupling very high pump

powers. This behavior can be clearly appreciated in Figs. 21
and 22. Equations (29)–(32) have been solved for 50-m-
long EDF. If the pump phase at z = 0 is �ϕp = 0.99π (see
Fig. 21), then the frequency response is kept rather flat up
to quite high modulation frequencies, since signal fractional
advancements exceed 0.4 up to 50 kHz for a pump power
of 10 W. This frequency modulation could be increased up
to 5 MHz by coupling a pump power as high as 1 KW. If
�ϕp = 1.01π (see Fig. 22), then the signal power is delayed
with a totally flat frequency response up to 2.5 kHz for a
pump power of 10 W. This frequency modulation could be
increased up to 250 kHz by coupling a pump power as high
as 1 KW. Signal fractional delays are practically 0.5 along
these ranges. Unfortunately, the signal power is always ad-
vanced by EDF when it is modulated to higher frequencies.

Furthermore, the signal power will be very slightly dis-
torted, provided that the pump power is high enough. Thus,
whether �ϕp = 0.99π or �ϕp = 1.01π , by coupling pump
powers greater than 1 W, signal distortion values are always
lower than 0.1 dB. Even if the pump power is 500 mW,
signal distortion values are lower than 0.2 dB. But if the
pump is only 100 mW, distortion can reach values as great as
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Fig. 23 Comparison of the
approximate results of Eq. (45)
(lines) with the numerical
results of Eqs. (29)–(32)
(symbols)

0.8 dB. Therefore, to apply these results, the lowest suitable
pump power would be around 500 mW.

By comparison between Figs. 11 and 21, it is clear that
this procedure based on the control of the pump phase en-
hances dramatically the frequency response. For instance, in
Fig. 11, signal fractional advancements are never greater that
0.05 if the signal distortion is kept below 0.2 dB, although its
frequency response is flat up to 5 MHz. However, in Fig. 21,
the signal fractional advancement is much greater for every
frequency since, even at 5 MHz, it has only decayed to 0.1.

Signal fractional advancements/delays have been com-
puted by solving Eqs. (29)–(32) and by Eq. (45) as well,
in order to check this approximation. Some representative
results are shown in Fig. 23 for �ϕp = 0.95π and for
�ϕp = 1.05π . While pump powers higher than 500 mW are
used, relative errors that affect advancements/delays are al-
ways lower than 4 %. However, for �ϕp = 1.05π , the mod-
ulation frequency where delayed signal changes abruptly to
advanced signal is not accurately determined by Eq. (45). In
Fig. 23, this inaccuracy is not appreciable since the relative
error that affects its logarithm is quite lower (around 5 %).

Finally, it is worth pointing out that these theoretical pre-
dictions are in agreement with the experimental demonstra-
tion reported in Ref. [38], as can be seen by comparing our
Fig. 14 with Fig. 3 of Ref. [38], and our Figs. 12 and 21
with Fig. 4 of Ref. [38]. Unfortunately, this qualitative com-
parison cannot be made quantitative, because in Ref. [38]
the results are obtained using low pump powers and short
lengths.

5 Conclusions

By using the theoretical model presented here, it is possi-
ble to obtain advancements, delays, and distortion values
as a function of the modulation frequency, the input pump
power, modulation indexes of pump and signal powers, the

input signal power, the fiber length, and the pump phase with
respect to the signal phase. Predicted values do not depend
on the direction of propagation of the signal power (forward
or backward propagating).

Although the pump power is not modulated, advance-
ments can be optimized such that distortion values remain
tolerable by varying the input pump power at each modu-
lation frequency. This procedure provides a quite flat fre-
quency response up to kHz-range, although advancements
are limited to low values. This flat response could be ex-
tended up to MHz-range provided that enormous pump pow-
ers were available. Nevertheless, advancement values would
not be improved.

By modulating the pump power and controlling the phase
of the modulation, the signal power can be delayed or ad-
vanced, and advancements and delays are dramatically en-
hanced. Thus, fractional advancements/delays near 0.5 are
obtained with very low distortion varying the pump phase
around π with regard to the signal phase. Moreover, the fre-
quency response is not made worse for advancements and
it is improved for delays (up to kHz-range). Finally, this
method breaks the relationships of delayed signal and ab-
sorption and of advanced signal and gain, which could be
essential for future applications based on slow and fast light.

Although these results have been computed considering
a particular EDF, they can be easily extrapolated to other
similar EDFs, provided that other nonlinear effects such
as quenching and up-conversion can be neglected, since it
can be assumed that neither the lifetime nor cross sections
change. In order to compare results for different fibers, it is
necessary only to consider the following three parameters:
Pp(0)/P th

p , P ±
s (0)/P th

p and NT L (NT being the concentra-
tion of erbium-ions), since γp, γa , and γe are proportional to
NT . For example, if NT were to be multiplied by two, we
would have to divide the fiber length by two to obtain the
previous results, since P th

p does not depend on NT .
Finally, this theoretical model could be easily modified to

treat other types of optical amplifiers such as semiconductor
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optical amplifiers. Although modulation frequencies would
be shifted to GHz-range because their lifetime is much
shorter (typically nanoseconds), their behavior should not
offer great changes, provided that the amplifier was strongly
pumped.
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