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In this paper we provide a simple, straightforward example of a specific situation in which weak-
value amplification (WVA) clearly outperforms conventional measurement in determining the
angular orientation of an optical component. We also offer a perspective reconciling the views of
some theorists, who claim WVA to be inherently sub-optimal for parameter estimation, with the
perspective of the many experimentalists and theorists who have used the procedure to

successfully access otherwise elusive phenomena.
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1. Introduction

A lively debate has recently been sparked in the scientific
literature, regarding the question of whether weak-value
measurements (WVMs) [1, 2] can outperform conventional
measurements in determining a physical parameter of a sys-
tem. One line of reasoning concludes that WVMs cannot be
used to increase measurement precision, because, stated most
simply, WVMs entail the use of post-selection. Data is dis-
carded in the post-selection process, and from an information-
theoretical standpoint, one is always worse off for having
rejected data. This argument can be formulated very rigor-
ously, and is quite compelling. Even if the data that are
retained are vastly more ‘information-rich’ per datum, there is
undoubtedly some useful information in the discarded data,
and one could make a more accurate measurement by
retaining this information.

However, there are potential flaws in this argument. First
of all, while post-selection and sorting can result in a loss of
available information [3], weak value-based measurements do
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not necessarily require that data be discarded. Instead, data
can be sorted into bins by the means of post-selection, and
each bin subsequently used for a specific measurement. This
strategy has been successfully implemented in the past [4, 5].

Another potential flaw is that, even in a conventional
measurement, there may be practical factors that preclude the
use of all of the data that are in principle available in theory.
In such instances, the experimentalist is faced with the choice
of either discarding data indiscriminately, or discarding only
the least information-rich data. Experimentally, the latter
option would clearly result in a stronger signal than the for-
mer, conferring greater accuracy upon measurements of the
quantity of interest. This, in a sense, is the entire point of
weak value amplification (WVA). One might choose to dis-
card the vast majority of the data, which contains little useful
information, and instead retain that fraction of the data for
which the signal to be measured is large [6]. The presence of
certain types of technical noise in the detection system
represents one example of a situation in which this strategy
may be desirable, as WVA could ensure that the signal to be
measured lies above the noise floor of the detection system.

© 2016 The Royal Swedish Academy of Sciences Printed in the UK
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Here, we provide an overview of the WVA versus con-
ventional measurement controversy, and present a simple
example of a situation in which WVA affords an advantage
over strong measurement.

2. Background

Conventional (or ‘strong’) measurement in quantum metrol-
ogy can be implemented or modelled by an interaction
between two quantum systems. A fairly typical example in
optics is the interaction between the polarization and position
degrees of freedom of a beam of light, though other approa-
ches are also possible (for example, coupling between a
beam’s orbital angular momentum (OAM) and time or fre-
quency). For clarity, we will refer to these two interacting
degrees of freedom as the ‘system’ and ‘pointer’, and will
denote the corresponding quantum mechanical observables by
A (the system) and % (the pointer). If the respective initial
states of the system and pointer are denoted by |I) and |¢),
then the interaction results in a transformation
) |) — e—igAp, /i |I)|¢) in the overall state of the beam [1].
Here, p, is taken to represent an observable Fourier conjugate
to X, and g is a parameter that controls the strength of the
interaction between these two degrees of freedom. For con-
creteness, £ and p, might respectively be imagined to repre-
sent the x-position and linear momentum operators associated
with the transverse degree of freedom of a light beam. At
the same time, A could be a polarization observable, taken
to have eigenvalues a, = +1, associated with its horizontal
(+) and vertical (—) polarization eigenstates |H) and
|V), respectively. For the simple case in which a beam is
prepared in an initial state |I) = |H), conventional measure-
ment involves a transformation of the form |H)|¢) —
e 6AP/N | HY|op) = e8P /0 |H) |4)). The term e~i8%/% serves
as a translation operator, so that the final state thus receives a
‘kick’ in position space by an amount a,, g, with m = + when
|I) = |H) and m = — when |I) = |V). As a result, the final
state in the position basis will be described by a wavefunction
(x| ¥) = ¥ (x — ang), which now carries information about
the interaction parameter g. Indeed, g can be estimated by
simply measuring the position of the beam’s centre before and
after the position/momentum interaction. Consequently,
while this interaction was introduced as a model of the
measurement of system observable A, this procedure can also
be seen as a practical method to measure the interaction
strength g itself. In other words, we are seeking to estimate
the magnitude of an interaction induced by a physical effect
under study. In our above example, it could be the transverse
shift induced by a birefringent crystal (e.g. see [2]). Indeed, in
this case, g can be estimated by simply measuring the position
of the beam’s centre before and after the interaction.

It has been suggested that WVA might allow for
improved measurements of g relative to the more conven-
tional scenario just presented. In order to implement the WVA
scheme, one must prepare the beam’s initial state in a
superposition of the eigenstates of A, for example,

|1y = %(|H> + |V)). Next, the interaction above occurs, in

the manner already described for conventional measurement.
Thus, the beam takes the form [I)|¢)) — e~igdh:/h |1} ]4p).
Note that |I) is not a polarization eigenstate of A. We now
suppose that a post-selection is carried out, in which the beam
is made to pass through a polarization filter, which guarantees
that the polarization state of the emerging beam is given by
|F). Assuming g to be small, the position state of the beam
will then be given by [1]

[pwya) = (Fle €42/A|1) |p)
(FI(1 — igAp, /M) )
(FIIY(1 — igAyp, /Ti) 14))

(P eiend h]y),

Q

Q

Q

where we have neglected terms O(g?) and above, and have
introduced A, = (F| A |I)/(F| I), the weak value of the
observable A, which we take to be real for the moment, by
making an appropriate choice of |I) and |F). When normal-
ized, the WVA wavefunction thus takes the form
(x| Ywva)/(F| I) = ¢ (x — Ayg). Ay can, in general, take
on values that lie well outside the eigenspectrum of A, so that
Ay > max(A), particularly when (F| I) ~ 0. As a result,
when g is small, the WV A approach can produce shifts in the
beam’s system degree of freedom far exceeding those pro-
duced in the case of conventional measurement (1). This is
true in the ‘weak measurement regime’ defined by
Ay g/0 < 1, where o is the standard deviation of the pointer
position (i.e. the transverse beam width) [7]. Outside this
regime, the expansion in equation (1) is not valid and the
pointer position distribution (i.e. the beam shape) will be
distorted by the interaction.

Based on equation (1) alone, the WVA strategy certainly
seems promising; the expression suggests that otherwise
minute or imperceptible signals can be enlarged by increasing
the weak value Ay,, presumably resulting in improved sensi-
tivity and heightened signal-to-noise ratios (SNRs) on esti-
mations of g. However, this conclusion overlooks an
important consideration: in reality, the desirable ‘amplifica-
tion’ effect is generally offset by a corresponding decrease in
the strength of the post-selected signal obtained following the
weak interaction [8]. In effect, amplification can be achieved
only at the cost of ‘throwing away’ data, a process that is in
general associated with a loss of available information. Spe-
cifically, only the fraction |(F| I)|*> of photons remain after
the post-selection filter. In weighing the merits of the WVA
approach, it then becomes necessary to account for both the
signal amplification due to the (potentially) large weak value,
and the signal loss necessarily incurred as a byproduct of
post-selection.

Considerable effort has recently been expended in
attempts to determine whether WVA actually confers an
overall advantage in quantum metrological applications, once
these (and other) competing effects are accounted for.
Unfortunately, this work has produced a wide range of results
which may at first glance appear to be mutually inconsistent,
or even contradictory. One could be forgiven for experiencing
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some confusion when confronted with theoretical studies that
purport to show the WVA approach to be undesirable [9, 10],
given that several experimental investigations have success-
fully applied the WVA strategy to the measurement and
detection of otherwise inaccessible phenomena. Notably,
WVA was used to measure photon displacements to
within ~1 A, in a demonstration of a photonic analogue to the
quantum spin Hall effect [11], and has also been successfully
applied to the ultrasensitive measurement of the displacement
of optical components [12], and beam rotations [13].

Despite this debate, it is generally accepted that in the
complete absence of noise, detector saturation and other
practical constraints (i.e. in the experimentally unattainable
limit of a ‘perfect measurement’), the WVA technique will
not confer an advantage over standard (strong) measurement
schemes. For this reason, those advocating for WVA’s
metrological potential generally argue that the benefits of the
post-selection approach are felt under explicitly sub-optimal
experimental conditions. Indeed, the recent controversy sur-
rounding the usefulness of WVA in quantum metrology was
ostensibly sparked by an argument made by Feizpour, Xing
and Steinberg (FXS), regarding the potential benefits afforded
by WVA in the presence of highly correlated noise [14]. In
their paper, FXS use a weak-measurement strategy to amplify
nonlinear phase shifts associated with single photons, and
estimate these phase shifts by averaging their data. Their
suggestion that WVA might prove superior to standard
measurement was countered by Ferrie and Combes (FC), who
argued that the superior SNRs reported by FXS using the
weak measurement scheme were artifacts of the team’s use of
a sub-optimal estimation strategy [15]. Rather than a simple
average over one’s data, FC pointed out that the rigorously
correct estimator (that associated with the lowest mean stan-
dard error) is always the maximum likelihood estimator
(MLE). FC’s theoretical treatment revealed that when the
MLE is employed rather than the mean, not only does the
advantage of the FXS WVA strategy disappear, but the
approach results in a decrease in SNR. However, the MLE
requires knowledge of a covariance matrix K, which defines
the amplitude of the noise in the quantity being measured. As
one rarely has access to this information, it might be argued
that the MLE cannot be implemented in practice. FC antici-
pate this objection by demonstrating that a simplified MLE
can be defined, which does not depend on this covariance
matrix, and which is unbiased and nearly optimal when
%> |K||. FC also point out that FXS’s use of SNR as a
figure of merit in evaluating WVA is, itself, undesirable, as it
does not reflect the performance of the MLE, but rather that of
a sub-optimal estimator, and argued that the mean standard
error should be used instead, concluding from their analysis
that, ... there is no sense in which WVA provides an
‘amplification’ for quantum metrology.’

FC’s theoretical exposition was followed in short order
by a response from Vaidman [16], who argued that exper-
imental conditions are generally such that detector saturation
can play a significant role in constraining measurements, and
implied that once this effect was taken into consideration,
WVA would indeed allow for improved measurement

precision. Jordan, Martinez-Rincon and Howell (JMH)
shortly thereafter reported a detailed theoretical treatment of
the purported benefits of the WV A approach (and specifically
considered the role played by imaginary weak values) in the
presence of a number of specific types of noise, and argued
that the strategy might be used to remove the effects of
detector noise and air turbulence in beam deflection mea-
surements [9]. JMH investigated the case of arbitrary metre
wavefunctions and technical noise that is not time-correlated,
and concluded that although no benefit can be derived from
amplification using the real part of the weak value (in
agreement with FXS), a WVA technique implementing an
imaginary weak value can afford an advantage. JMH also
made the important point that benchmarking the performance
of WVA using rigorously optimal estimators, as in the strat-
egy adopted by FC, may not always be appropriate. ‘Rather,’
they argued, ‘the optimal estimator should be found and must
be practically implementable. If it is not, the inefficient—but
practical—estimator is advantageous.” Returning to the case
made by FXS, JMH suggest that the case of time-correlated
technical noise is precisely one in which the optimal esti-
mation strategy is not practically feasible, respectively mak-
ing the SNR and experimental averaging the appropriate
figure of merit for measurement performance and parameter
estimator at least in practice, if not in principle. That WVA
improves on standard measurement when the SNR is used as
the measure of performance was also demonstrated by Pang
and Brun, for measurement pointers prepared in squeezed
coherent states [17], though it remains somewhat unclear
whether this advantage is due to WVA itself, or merely to the
SNR improvement that generally accompanies squeezing.

Criticism of the WVA technique is often expressed in the
more robust language of Fisher information (FI), a quantity
that effectively provides the variance of the best possible
estimator for a parameter of interest [18]. Different experi-
ments carried out on the same system can provide different
FIs: one might readily imagine, for example, an experimental
configuration that is so sub-optimal that essentially no infor-
mation is provided about the parameter being interrogated
(one might say that such an experiment was ‘poorly
designed’), or conversely, an experiment so well designed
that it extracts all the information about this parameter theo-
retically contained in the quantum state. The FI obtained in
the latter case is referred to as the quantum Fisher information
(QFD), and is strictly defined as the FI, maximized over the set
of all measurements (POVMs) that might theoretically be
carried out on the system [19]. To this extent, the QFI
effectively becomes a property of the state being probed,
rather than being characteristic of the measurement process
itself.

Tanaka and Yamamoto demonstrated that the full QFI
contained in a quantum system about a given parameter
cannot in general be extracted by the WV A approach, under
asymptotic conditions (i.e. for an infinite number of photons)
[20]. Knee and Gauger came to a similar conclusion by
making use of a model that traced out (and therefore ignored)
the system, making use of no post-selection [10]. These
arguments were later extended by Combes, Ferrie, Jiang and
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Caves (CFJC), who framed their position in the language of
density matrices, allowing them to draw conclusions applic-
able in the case of finite photon counts and, in principle, to
generalize their results to include the effects of noise [21]. In
their paper, CFJC explicitly indicate at which stages and by
what mechanisms QFI can be lost during a typical WVA
measurement. To this end, they divide a typical WVA mea-
surement into four stages. In the first, a joint state is prepared,
consisting of a distinct system, which contains information
about some parameter x of interest, and ancilla degrees of
freedom. Next, the system and ancilla are made to interact,
resulting in the storage of information in the ancilla. The
newly entangled system-ancilla is then partitioned into a
category of information-rich outcomes, and one of unfa-
vourable outcomes. The latter are discarded in the final stage,
resulting in a post-selected system state into which informa-
tion about x has been concentrated. At no stage, CFJC argue,
can the QFI about x have increased. Further, as information is
necessarily discarded in the third and final stages, the QFI can
only decrease or, at best remain constant, in a WVA mea-
surement. CFJC condition their conclusion that WVA can
only lead to a loss of available information on two premises:
(1) ‘a sub-optimal strategy cannot achieve optimal perfor-
mance,” and (2) ‘information cannot be increased by throwing
some of it away.’

A related argument was developed by Zhang, Datta and
Walmsley (ZDW), who considered the partitioning of FI in
post-selected weak measurement schemes [3]. ZDW showed
that a typical WVA experiment distributes information about
the parameter(s) of interest in three different places: the
success modes (the modes that survive post-selection), the
failure modes, and the distribution of the post-selection pro-
cess itself. That is, they consider the case in which all data are
retained. The total FI after a WV A-based measurement is then
given by

Fo=p;Fa+ A —p)) F + Fp,

where Fy, F, and F, respectively denote the QFI in the suc-
cess mode, the QFI in the failure mode, and the (classical) FI
associated with the distribution of the post-selection process
{p;, 1 — p;}. In a typical WVA experiment, one discards the
failure modes, leading to a loss of available information
(1 — p;)F.. Since the total FI after the weak interaction
between system and pointer cannot be greater than the QFI,
Fi, present in the original state (prior to interaction and post-
selection), ZDW argue that F > Fy > p,Fy + F,. They
observe that while F; < F; is possible, the low post-selection
probability p,; ensures that overall, WVA cannot result in a net
gain of information.

The existence of a substantial body of work demon-
strating the sub-optimality of WVA under ideal conditions
makes all the more surprising the findings of Bié Alves et al
who recently provided a prescription for state post-selection
in WVA-type schemes, which allows the full QFI F; origin-
ally contained within a quantum state to be extracted, up to
first order in the coupling parameter g [22]. They show that in
certain measurement regimes the original QFI is concentrated
almost entirely in the distribution of the post-selection

process, or in the successfully post-selected mode. According
to this line of argument, very little is sacrificed by making use
of WVA rather than a conventional strong measurement
strategy, even under optimal circumstances. In addition to
demonstrating WVA’s potential to realize an optimal or near-
optimal measurement, Alves et al derive the post-selected
states for which the FI approaches the QFI, on the assumption
that the meter used for the measurement is balanced. Their
analysis leads to the surprising conclusion that exact ortho-
gonality between pre- and post-selected states, , which is
generally avoided in WVA experiments, can actually max-
imize the FI obtained in a WVA measurement. This is
because the case (/| F) = 0 can result in a concentration of
FI in the statistics of the post-selection distribution, rather
than in the meter.

Others have reached similar conclusions, regarding the
ability of WVA to saturate the QFI originally available in the
quantum system prior to post-selection [9]. Alternative stra-
tegies have also been proposed to further improve the extent
to which this upper limit can be saturated by WV A, based, for
example, on entangling additional ancillary states with the
system state [23].

Ultimately, the current controversy surrounding the
possible benefits of WVA is perhaps no more than a bypro-
duct of binary thinking, rather than any actual disagreement
within the literature. Some criticize WV A, owing to its failure
to outperform conventional measurement under ideal or near-
ideal circumstances. A second group argues that experimental
context matters, pointing out that WVA plays an important
practical role in real-world measurement, due to the existence
of such constraints as noise and detector saturation. These two
positions are not incompatible; taken together, they merely
suggest that there exists a range of experimental conditions
under which conventional measurement should be preferred
to WVA, and one under which this state of affairs is reversed.
A number of experimental observations certainly suggest that,
in practice, the frequency with which the experimentalist
encounters the latter scenario is far from negligible
[6, 11-13].

3. Example: a practical advantage for weak value
amplification

We now provide a simple example of a situation in which
WYVA allows us to measure an otherwise inaccessible phy-
sical parameter. We consider the situation shown in figure 1.
Part (a) of the figure shows the numerically simulated inten-
sity profile of light beam that has the form of an angular
wedge. More precisely, the beam has a transverse field profile
that is Gaussian in the azimuthal coordinate, v (¢)) = e~¢/""
where 7 denotes the intensity 1/¢2, half-width of the wedge,
which is taken to be 28.6° in this example. The wedge is
centred on the horizontal axis. The challenge is to determine,
by eye alone, whether the wedge has been rotated. Part (b) of
the figure shows the same wedge, rotated counterclockwise
by 0.5°. Even under close inspection, the rotation of the
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Figure 1. A simple simulated example of the utility of weak value amplification. (a) A light beam with a Gaussian azimuthal intensity
transverse spatial profile, i.e. a wedge. (b) The wedge of part (a) has been rotated by 0.5°. There is no noticeable change in the figure. (c)
After weak value amplification, the rotation of the wedge is increased by a factor of 22.5, and the rotation is clearly visible by eye. The
intensity in (c) has been increased by a factor of roughly 1000 so that it is visible in the plot.

angular wedge eludes the naked eye. One can perform a weak
value amplification of the rotation angle by using the method
described by Magafia-Loaiza et al [13]. The simulated
resulting intensity profile is given in Part (c). As discussed
below, even by eye, it is clear that the structure has been
rotated and has been rotated in a counterclockwise sense.

One may be tempted to argue that this comparison is
unfair, as it overlooks the beam intensity loss due to post-
selection; indeed, in this situation, the image of part (c) would
be about 1000 times weaker than that of parts (a) or (b). But
this fact is irrelevant for the point that we are making here.
The human visual system possesses a dynamic range that is at
least this large [24, 25]. Attenuation of a laser signal by a
factor of 1000 still allows the structure of the laser beam to be
discerned. Or stated differently, amplifying a laser beam by a
factor of 1000 does not usually make it easier for a human
observer to discern the structure of the beam. Hence, the
experimental context—in this case, the fallible and dynamic
human eye—makes a great difference in determining whether
and to what extent the WVA approach is viable.

The example given here assumed that the measurement
was to be made by the human visual system. Nonetheless,
many of the same considerations would apply to state-of-the-
art photodetection systems. The point here is that, when using
certain realistic detection strategies, it is simply easier to
determine from figure 1(c) than from figure 1(b) that beam
has been rotated away from the horizontal symmetry plane.
We believe that such practical considerations cannot be
overlooked when weighing the merits of WVA. In the next
section, we go into detail about an experimental setup that can
produce this striking example.

4. Numerical simulations of the weak value
amplification of angular rotations

The study of weak measurements and, by extension, of weak
value amplification originated in the field of quantum mea-
surement theory. WVA has been recognized as an inter-
ference phenomenon [26-28]. Indeed, the various WVA

protocols that have been proposed since the technique’s
inception have been implemented in optical interferometers.
Here, we take advantage of the interference-based origin of
WVA, and invoke interference arguments to illustrate a
situation in which weak measurement is advantageous rela-
tive to a conventional measurement. As a specific example,
we discuss a protocol for measuring the angular rotation of an
optical element. Similarly to the first demonstration of WVA
performed by Ritchie and colleagues [2], this protocol
exploits the spatial degree of freedom of light, which is
independent of the excitation mode of the field. Conse-
quently, our experiment can be explained using classical
arguments.

The first protocol for WVA in the azimuthal variables of
angular position and OAM demonstrated the possibility of
amplifying small angular rotations [13]. This protocol was
realized experimentally using a Sagnac interferometer in
which was placed a Dove prism. It was demonstrated that the
real weak value produces a shift in the angular position of an
optical beam, whereas the imaginary weak value induces a
shift in the OAM spectrum of the beam. The use of real weak
values for amplification of angular rotations provides a direct
and simple means of visualizing the practical advantage of
weak measurements and post-selection. By contrast, the
physics of imaginary weak values in the azimuthal degree of
freedom must be analysed using more sophisticated tools,
such as geometric phases and interference in the OAM
spectrum, which serve to obscure the origin of the amplifi-
cation effect. We shall therefore set aside the high amplifi-
cations that have been achieved by using imaginary weak
values, focusing our attention instead on the consequences of
real weak values. A formal discussion of imaginary weak
values in the context of the azimuthal degree of freedom can
be found in reference [13].

As discussed in section 3, we use a beam with a trans-
verse profile of the form of a Gaussian wedge. This can be
generated using a spatial light modulator. As shown in
figure 2, this angular mode is prepared in a diagonal polar-
ization state using a polarizer and a half wave plate. We
assume that this beam is injected into one of the input ports of
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Gaussian angular mode
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Polarizer —
HWP

Camera

Post-selection polarizer
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e
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Figure 2. Experimental setup. An angular wedge is prepared in diagonal polarization by means of a polarizer and half wave plate (HWP). The
beam is split by a polarizing beam splitter (PBS) and rotated by a Dove prism, the beam is rotated by twice the angle of the Dove prism. A
post-selection polarizer is used to amplify the rotation induced by the Dove prism.

H polarized V polarized

(a) |
— )

0.25
(.
C
0.2 ( ) 0.4
0.15 0.3
—

0.1 0.2
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Post-selection at A

i

Post-selection at D

Figure 3. Simulation results. (a) Shows the spatial profile of the Gaussian wedge in one of the arms of the interferometer. The polarization of
this beam is aligned in the horizontal direction. (b) Shows the vertically polarized beam in the second arm. (c) Shows constructive
interference when the position of the post-selection polarizer set diagonally. (d) Shows destructive interference when the post-selection

polarizer is anti-diagonal.

a polarization-sensitive Mach—Zehnder interferometer. A
polarizing beam splitter (PBS) divides the beam into its
horizontally and vertically polarized components. The verti-
cally polarized beam passes through a Dove prism, and the
two beams are then recombined in a second PBS. The para-
meter we seek to measure is the rotation angle of the Dove
prism. The Dove prism will rotate the vertically polarized
beam by twice its angle. The interaction strength g is the
prism rotation angle. A final polarizer comprises the post-
selection. The beam’s transverse intensity profile is then
measured by a camera. This simple experimental setup has
been applied to other sophisticated experiments that have
been used to test counterintuitive effects in quantum
mechanics [29].

We now proceed to consider the conventional and WVA
measurement techniques in turn, beginning with the latter,
which is found to outperform its alternatives in most experi-
ments involving classical interferometry. We consider the
case in which a Gaussian wedge-shaped beam with 1 = 28.9°
is injected into the input port of the setup depicted in figure 2.
For the moment, we assume that the Dove prism is not
rotated. Figures 3(a) and (b) show the spatial profile of this
angular wedge. In this case, the output port of the PBS is

expected to be brightest when the angle of the Dove prism is
zero and the angle of the post-selection polarizer is set to
diagonal; this result is illustrated in figure 3(c). When the
post-selection polarizer is set to anti-diagonal, however, the
two angular modes interfere destructively and the port
becomes dark, see figure 3(d). Given that we begin with a
diagonal polarization, this shows that the interferometer does
nothing when the prism is not rotated, as expected.

We now consider the effect of rotating the Dove prism.
We consider the situation in which the Dove prism induces an
angular separation of 0.5° between the wedge modes in each
arm of the interferometer. As shown in figures 4(a) and (b)
this rotation is very small, and can hardly be discerned by eye.
In conventional interferometry, this situation might be said to
arise as a result of a slight misalignment of the interferometer.
The post-selection polarizer is set to anti-diagonal. This
rotation of the prism gives rise to interference fringes at the
output port of the interferometer, as shown in figure 4(c).
Since we are post-selecting on a polarization perfectly
orthogonal to the initial polarization it is impossible to satisfy
the conditions needed for a weak measurement. In particular,
notice the post-selection probability |(F |I)|* is zero in this
case. This means that A, = oo and, thus, the scheme is
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Figure 5. Simulation for the weak measurement regime. The horizontally polarized beam (reference) in one of the arms of the interferomer is
shown in (a). The horizontally polarized beam is rotated by 0.5°, as is shown in (b). The rotation has been amplified by a factor of 22, as is

shown in (c).

outside the regime in which weak measurement is valid.
Consequently, the pointer (our wedge) becomes distorted; it
has two lobes.

In the simulations discussed above, the polarizer forces
the two beams to interfere constructively or destructively.
Interestingly, the polarizer can also be used as a specific filter
to discard photons that carry little information about the
rotation. We illustrate this approach with the following
example: we assume that the wedge mode with horizontal
polarization is not rotated, whereas the mode in the arm that is
vertically polarized is rotated by 0.5°. As can be seen in the
simulations shown in figures 5(a) and (b), it is hard to observe
this rotation by eye. Later, the two beams are combined and
forced to interfere using the post-selection polarizer. The
post-selection process destroys polarization information in the
probe, and induces a shift in the pointer, or spatial profile of
the beam. The shift is proportional to the product of the small
rotation in one of the beams, and the real weak value that is
determined by the post-selection polarizer. When the post-
selection polarizer is set to an anti-diagonal position minus a
small angle § = 1°, we observe the result in figure 5(c). After
post-selection, the angle of the pointer is —11.2355°, which
corresponds to an amplification of 22.4710. In this case, the
maximum intensity is normalized to one for diagonal polar-
ization. Of course, since we are post-selecting on an almost
orthogonal state, in anti-diagonal polarization case

(figure 5(c)) the intensity is reduced by four orders of
magnitude.

It has been argued that protocols for WVA offer nothing
more than classical interferometry. We now turn to a practical
example that shows that it is easier to observe a small angular
rotation when WVA is performed. We begin by considering a
situation in which the post-selection polarizer is removed. In
this case, the incoherent superposition of both beams leads to
a distribution broadened and shifted by the Dove prism’s
angular rotation. Neglecting this small broadening, the
reduced shift thus halves the measurement sensitivity. On the
other hand, if the polarizer forces the two beams to interfere in
the same manner as in the examples given above (classical
interferometry), the resulting interference fringes can be
analyzed to infer the position of the prism. For example,
figure 6(a) shows the interference pattern obtained by means
of conventional interferometry for a situation in which the
Dove prism induces an angle between the two interfering
beams of 0.5°. Figure 6(b) shows a similar pattern for a
situation in which the angular separation between the beams
is 1°. It is evident that it is hard to distinguish any difference
between the two interference patterns. One would have to
perform a careful analysis of the interference fringes in order
to determine the value of the small rotation. Consequently, the
precision for this measurement is expected to be low. Inter-
estingly, the protocol for WV A leads to clear wedge rotations.
In this case it is easier to distinguish the situation in
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lines in the upper panels are at the same angular inclination and are simply a reference to compare the intensity distributions to. With

reference to these white lines, it is clear that the difference between (a) and (b) is minimal. Consequently, it is difficult by eye to discern a 1°
rotation from 0.5° rotation, or, in fact, whether any rotation has occurred at all. However, this small difference can be easily identified when
weak value amplification is performed. Again referencing to the white lines in the lower panels, the difference between the beams in (c) and

(d) is evident.

figure 6(c), in which the Dove prism induces a rotation of 0.5°
from that shown in figure 6(d) for which the angle is set to 1°.

5. Conclusion

We have described a straightforward scenario in which the
WVA technique can outperform conventional measurement.
We note that the example that we have provided does not
necessarily contradict the existing body of theoretical work
that claims WVA to be sub-optimal relative to more con-
ventional measurement strategies, for ideal or near-ideal
experiments. Rather, we have concerned ourselves with the
case of detection using the naked eye, which possesses a large
dynamic range that can easily accommodate intensity losses
due to post-selection, provided that a sufficient number of
photons are initially available for the measurement. We
conclude that, like most experimental protocols, WVA is a
procedure from which a benefit can be derived under many—
but by no means all—experimental circumstances. More
broadly, WVA is just one example of how weak measurement
can be used to measure quantities that are sometimes inac-
cessible to experimentalists [30].
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