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Measuring the orbital angular momentum
spectrum of an electron beam
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Robert W. Boyd5,7, Martin P.J. Lavery8, Miles J. Padgett8 & Ebrahim Karimi5,9

Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized

and unbounded magnetic dipole moment parallel to their propagation direction. When

interacting with magnetic materials, the wavefunctions of such electrons are inherently

modified. Such variations therefore motivate the need to analyse electron wavefunctions,

especially their wavefronts, to obtain information regarding the material’s structure. Here, we

propose, design and demonstrate the performance of a device based on nanoscale holograms

for measuring an electron’s OAM components by spatially separating them. We sort pure and

superposed OAM states of electrons with OAM values of between � 10 and 10. We employ

the device to analyse the OAM spectrum of electrons that have been affected by a micron-

scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale

magnetic spectroscopy.
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Modenae Reggio Emilia, Via G Campi 213/a, I-41125 Modena, Italy. 5 Department of Physics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario,
Canada K1N 6N5. 6 CNR-IMM Bologna, Via P. Gobetti 101, 40129 Bologna, Italy. 7 Institute of Optics, University of Rochester, Rochester, New York 14627,
USA. 8 School of Physics and Astronomy, Glasgow University, Glasgow, G12 8QQ Scotland, UK. 9 Department of Physics, Institute for Advanced Studies in
Basic Sciences, 45137-66731 Zanjan, Iran. Correspondence and requests for materials should be addressed to V.G. (email: vincenzo.grillo@unimore.it) or to
E.K. (email: ekarimi@uottawa.ca).

NATURE COMMUNICATIONS | 8:15536 | DOI: 10.1038/ncomms15536 | www.nature.com/naturecommunications 1

mailto:vincenzo.grillo@unimore.it
mailto:ekarimi@uottawa.ca
http://www.nature.com/naturecommunications


Q
uantum complementarity states that particles, for exam-
ple, electrons, can exhibit wave-like properties such as
diffraction and interference upon propagation. Electron

waves defined by a helical wavefront are referred to as twisted
electrons and are imbued with several additional mechanical and
magnetic properties1. For instance, upon elastic interaction, these
magnetic properties, in conjunction with the opposite handedness
of twisted electrons, allow for probing magnetic chirality as well
as magnetic dichroism2,3. Furthermore, the added unbounded
twisted motion of these charged particles is pertinent to the
investigation of the nature of radiation4, virtual forces and
increasing the lifetime of unstable and metastable particles5. From
a more fundamental viewpoint, structured electrons also provide
novel insights into the quantum nature of electromagnetic–matter
interaction, for example, the realization of Landau–Zeeman
states6,7 and spin-to-orbit coupling8. Orbital angular
momentum (OAM)-carrying electron waves can be generated
through a variety of methods by directly interacting with the
electrons’ wavefronts9. These processes rely on devices such as
spiral phase plates10, amplitude and phase holograms11–14,
cylindrical lens15 mode converters or even electron microscope
corrector lenses16. Spin-to-orbit coupling has also been
theoretically proposed as a method to add OAM to electrons17.
Other methods to do so exploit the magnetic properties of
electrons, most notably by employing a magnetic needle
simulating a magnetic monopole18.

Reciprocally, devices that are used to generate twisted electrons
can also be adapted to measure an electron’s OAM content19. The
most commonly employed of these devices relies on a series of
projective phase flattening measurements, allowing one to obtain
the magnitude of each OAM component of a beam’s spectrum20.
To perform such an analysis, an OAM component’s wavefront is
flattened, thus causing it to gain a Gaussian-like profile upon
propagation21. This profile allows it to be easily selected from the
remaining parts of the beam and therefore to evaluate the
intensity of this component. To obtain these relative intensities,
each component needs to be coupled to the device’s electron
detection mechanism. However, this coupling process is biased
towards electrons carrying lower absolute values of OAM, thus
introducing discrepancies in the measured spectrum22. Moreover,
much like how different types of OAM-carrying beams are
generated using different devices, different devices are required to
flatten the wavefronts of the beam’s various OAM components.
Therefore, though such an analysis of a beam’s OAM content is
efficient, it also requires a substantial number of elements to
perform repetitive measurements. There are also other OAM
measurement methods relying on interferometry23,24, though
they possess serious limitations such as a limited amount of
information that can be extracted from the obtained interference
patterns or also by the need for an extremely stable
interferometer. Interferometry is also of limited usefulness when
analysing the OAM content of inelastically scattered electrons due
to their short coherence lengths.

A viable alternative to these methods is available in optics and
relies on transforming an OAM-carrying photon’s azimuthal
phase variations into transverse phase gradients that can be
spatially resolved and separated with a lensing element25,26. The
device thus effectively behaves as an OAM spectrometer, which
could be of significant interest in electron optics and materials
science as it would provide detailed information on a material’s
magnetic spectrum.

The operation of our presented electron OAM spectrometer
relies on a similar OAM separation process. Much like its optical
counterpart, it is essentially based on unwrapping the azimuthal
phase variations associated with an electron’s OAM into
variations over a Cartesian coordinate of the plane transverse to

the electron’s propagation. This effectively causes the electron’s
original helical wavefronts to become planar and inclined with
respect to the beam’s original direction of propagation. Namely,
the degree to which these wavefronts are tilted will increase with
the azimuthal variation of the electron’s original phase profile,
that is, its OAM. As a result, focusing these unwrapped waves
with a lensing element will cause electrons originally carrying
different OAM values to focus at correspondingly separate lateral
positions. By using this method, we are thus able to decompose
an electron beam’s OAM content by measuring the relative
electron intensity at each of these possible focusing positions.

Results
Theory. The unwrapping process, as detailed in ref. 25, requires
the beam’s transverse profile in polar coordinates (r, j) to be
physically mapped to Cartesian coordinates. Such a
transformation can be achieved by means of a conformal
mapping between the Cartesian coordinates of the initial
beam’s profile (x, y) and those of its final profile (u, v).
The coordinates (u, v) are log-polar coordinates and can be
related to the Cartesian coordinates (x, y) via the transformations
x¼ exp(u)cos(v) and y¼ exp(u)sin(v) or equivalently by
u¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þ y2

p� �
and v¼ arctan(y/x)27. A Cartesian coordinate

xþ iy in the complex plane can be mapped onto its
corresponding log-polar coordinate u þ iv with the conformal
mapping f(z)¼ ln(z). Using a scalable version of this mapping,
F(z)¼ a ln(z/b), an OAM-carrying beam’s transverse
wavefunction c‘ r;jð Þ¼f ðrÞexp i‘jð Þ can be mapped to the
following wavefunction

Fðf ðrÞexpði‘jÞÞ¼U þ i V

¼ a lnðf ðrÞ=bÞþ i a‘j:
ð1Þ

Such mappings are commonly conducted using a set of confocal
phase elements performing a log-polar coordinate
transformation27.

Implementation. We adopt a similar diffractive approach to
develop our sorter using two electron phase holograms, as dis-
played in Fig. 1, and where the lensing effects required to perform
the mode transformation are configured using our electron
microscope’s lenses (see Supplementary Note 1 and
Supplementary Fig. 1 for more details). The first of the holograms
effectively maps the electron’s azimuthal phase variations along a
Cartesian coordinate, while the second provides phase corrections
to defects introduced by the first hologram. Additional infor-
mation concerning these elements is provided in Supplementary
Note 2. We depict this process in Fig. 1 where we show an
electron beam’s recorded transverse profile as it propagates
through the sorter. Here, we use electrons consisting of a
superposition of states defined by OAM values of ±5, that is,
cþ 5ðr;jÞþc� 5ðr;jÞ
� �

=
ffiffiffi
2
p

(ref. 28). Such a beam consists of a
series of 10 lobes that are equidistantly arranged along a
ring-shaped outline in the beam’s transverse plane. The
presence of these lobes is a direct result of the beam consisting
of a superposition of two OAM components defined by the same
magnitude, yet by opposite signs. More specifically, as they arise
from the beam’s OAM content, these lobes are additionally
related to its constituent ‘¼ � 5 electrons’ transverse azimuthal
phase profiles. The beam was generated using the phase mask
whose transmission electron microscopy image along with an
image of the beam transmitted through such a hologram can be
found in the generator plane of the sorter found in Fig. 1. After
passing through the sorter’s first hologram, these lobes rearrange
themselves into a line since the beam’s azimuthal phase variations
have been unwounded along one of the Cartesian coordinates of
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its transverse plane. The beam propagates through the second
hologram, shown in the corrector plane of Fig. 1, to stabilize its
propagation. The beam then propagates through a lens and is
focused onto a screen. This allows for the initial beam’s OAM
content to be readily analysed as depicted in the final plane of
Fig. 1.

A more thorough calibration of the sorting apparatus was then
performed by repeating the above process for wavefunctions
carrying various values of OAM generated with various devices
that are further discussed in Supplementary Note 3. The spectra
resulting from this calibration have been background subtracted
and deconvoluted using conventional spectroscopy methods (see
Supplementary Note 4 and Supplementary Fig. 2). These results
are displayed in Fig. 2 for the case of wavefunctions defined by
single and superposed OAM states ranging from � 10 to 10.
Based on the various parameters defining the phase profile of the
holograms used in the sorter, the cross-talk between components
of the electrons’ OAM spectra is expected to be below 20%.
However, due to fabrication and alignment imperfections in our
apparatus, including the holograms generating the OAM-carrying
electrons, we observe higher values of cross-talk between OAM
components. The values of the cross-talk observed in the spectra
shown in Fig. 2 were found to be 28% (Fig. 2a), 43% (Fig. 2b),
39% (Fig. 2c) and 18% (Fig. 2d). Such experimental limitations
could be overcome by adopting a fan-out configuration as
employed in optical sorters25,26 and by improving the quality of
the sorter and the corrector holograms via alternative fabrication
methods. Cross-talk can also be further reduced by an improved
control over the electron beam’s aberrations. Though this may be
the case, the sorter’s performance is clearly observed through the
distinct separation of the OAM states contained in the specific
electron beams.

This sorter can be used to analyse magnetic structures affecting
the OAM content of an electron beam. Here, we use our sorter to
analyse the magnetic properties of a magnetized sample deposited
using the method described in ref. 29, a cobalt magnetic dipole in
our case. To do so, the dipole has been positioned in the sorting
apparatus in a way to replace the holograms that were previously

generating the test wavefunctions. This magnetic structure
consists of a single magnetic bar. A scanning electron
microscopy image of the bar can be found in Fig. 3a. Its
magnetic configuration is characterized by a strong elongation
enforcing the presence of a strong net magnetic dipole moment
even after the magnetizing field is removed. Its remanence field
was also characterized using electron holography and Lorentz
imaging and is depicted in Fig. 3b.

The potential use of the sorter for this particular measurement
arises from the fact that the multiplicative term introduced by a
magnetic dipole onto a passing Gaussian electron beam
wavefunction can be written as

gðr;jÞ¼ exp i wðrÞsinjð Þ ð2Þ
where wðrÞ¼ em0Mð Þ=ðhrÞ, h is the Planck constant, m0 is the
permeability of vacuum andM is the dipole’s magnetic moment
(see Supplementary Note 5 for more details). To observe the
effect that such a term will have on an electron’s OAM content,
g(r, j) must be Fourier-expanded in terms of j, namely
gðr;jÞ¼

P1
‘¼�1 c‘ðrÞexp i‘jð Þ, where c‘ðrÞ are expansion

coefficients. However, given that the resulting expansion terms
carry a quantized azimuthal phase defined by ‘, then it follows
that these components also carry OAM values of ‘. By default, the
expansion coefficients c‘ correspond to the weight of each OAM
component of a beam that has been affected by the magnetic
dipole. These coefficients can be found using the Jacobi–Anger
expression, that is, exp i w sinjð Þ¼

P1
‘¼�1 J‘ðwÞexp i‘jð Þ, and

thus correspond to J‘ wðrÞð Þ, where J‘ is the ‘th order Bessel
function of the first kind. This formulation of the added phase
clearly depicts the imparted OAM content of the dipole onto the
electron beam’s wavefunction and hence the ability to use the
sorter to measure this magnetic dipole moment M.

Though a more detailed analysis can be used to predict the
OAM spectrum induced by the magnetic dipole, one can instead
employ a simplified model to do so based on the apparatus’ layout.
The use of this model is justified by the truncation of the beam
after passing through the first of the sorter’s holograms. Such
truncations result in lensing effects that will consequently displace
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Figure 1 | Schematics of the electron sorter. These schematics also show an electron beam’s experimental transverse intensity profile recorded at various

planes in the sorting apparatus. A hologram in the sorter’s generator plane that corresponds to the electron microscope’s condensor, produces an electron

beam carrying orbital angular momentum (OAM). In this particular case, the beam consists of a superposition of ±5 OAM states. The beam then goes

through a hologram in the apparatus’ sorter plane, positioned at the microscope’s sample holder, that performs the required conformal mapping

ðx; yÞ7!ðu; vÞ. Once the beam is unwrapped, it passes through a hologram in the sorter’s corrector plane corresponding to the microscope’s selected area

diffraction (SAD) aperture. This hologram brings corrections to any phase defects to the beam to stabilize its propagation through the rest of the sorter. At

the sorter’s output, the original beam’s OAM content is spatially resolved on a screen and captured by a CCD camera. A more detailed schematic of our

sorter’s implementation is included in Supplementary Fig. 1 and Supplementary Note 1 where we provide details concerning the electron microscope lenses

required to perform the mapping. Scanning electron microscopy (SEM) images of the depicted holograms, the ones in the generator, sorter and corrector

planes, are shown in a–c, respectively.
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electrons that were originally positioned at the hologram’s cutoff
radius rmax. As a result, these electrons will occupy a greater area
of the beam following the truncation. Their profile will therefore
also be spatially extended in the observed OAM spectrum. This will
cause the general outline of the sorter’s output to be predominantly
associated with these electrons. Strictly speaking, the output
spectrum of the sorter will be determined by its numerical aperture.
Therefore, we may approximate the phase added by the dipole
onto the beam as w(r)sin jEw(rmax)sin j that effectively removes
the need to consider the radial dependence of the beam’s OAM.
From this analysis, the relative probability of finding an electron
of OAM ‘‘ in the resulting beam is given by the coefficient
c‘j j2¼ J ‘j j w rmaxð Þð Þ

�� ��2 that will also yield the beam’s observed OAM
distribution as a function of ‘. This analysis, in agreement with a
more rigorous approach based on numerical calculations and also
an analytical approach (see Supplementary Note 5), reveals that the
dominant decomposition coefficients of such an electron’s spectrum
will be attributed to ‘ values satisfying ‘j j � w.

Using the sorter, the OAM content of the wavefunction after its
interaction with the dipole was recorded and is shown in Fig. 3c.
We find that the beam’s OAM content is mostly distributed near
‘¼ � 5; thus implying that the dipole is defined by a w value of
B5 rad. This value roughly translates to a magnetic dipole
moment of M � 6:2�109 mB, where mB is the Bohr magneton,
and is in good agreement with our estimated value of the
structure’s saturated magnetic dipole moment of 6.7� 109 mB.
The corresponding numerically simulated OAM spectrum based
on these parameters is also included in Fig. 3c. These numerical
results were obtained using our simplified model where we
assume that w(r)sin jEw(rmax)sin j and are in good agreement
with data based on the saturation field of the wire.

Discussion
In comparison with other methods used to examine magnetic
fields (c.f., refs 21,30,31), the OAM sorter proves its effectiveness
by readily providing the beam’s OAM spectrum. For an identical

number of detected electrons, this content is defined by an image
showing 20 c‘j j2 OAM coefficients yielding more information
about a beam’s phase than an image obtained using holographic
methods. Moreover, such images do not allow a direct measurement
of a sample’s magnetic information. Instead, this quantity has to be
extrapolated from the field in the dipole’s proximity. In addition, the
OAM sorter method does not rely on any phase wrapping or
unwrapping methodology, thereby simplifying a magnetic field’s
analysis. Further developments could also allow the improvement of
this device and the possibility to exploit it in atomic scale
measurements or in conjunction with scanning electron probes.
Given that the sorter only requires the phase masks in two distinct
planes, then its performance will become more effective if
absorptive elements like phase holograms were substituted by
structured electrostatic fields32.

Our sorter method also possesses the following prospective
extensions. On the one hand, when using the sorter to analyse
magnetic structures, the radial dependence of the phase added by
such structures can be lowered by exposing them to a beam
already carrying a known OAM value. This will cause the beam to
have a maximal intensity at a certain radius r‘. Therefore, the
majority of the beam’s electrons that have interacted with the
structure acquire a phase whose radial dependence will be
attributed to r‘. Much like how we approximated the phase
acquired by electrons to be predominantly defined by the
truncation radius of our apparatus rmax, we could likewise assign
additional importance to electrons attributed to a radius of r‘.
Such an approximation could provide additional simplifications
that are needed for matching the outcome of these magnetic
measurements with theory. On the other hand, a minor
modification to the sorter’s schematics can be proposed to sort
electron modes in a different mutually unbiased basis, namely the
so-called angular basis26. Performing an additional set of
measurements of an electron’s phase in this basis could provide
additional information, for example, regarding the phase of the
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Figure 2 | Experimental OAM spectra of electron beams. Spectrum of a beam consisting of electrons defined by: (a) OAM of þ 1, cþ 1, produced with a

spiral phase plate; (b) a superposition of ±4 OAM states, cþ4 þc�4

� �
=
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2
p

, generated by a phase mask; (c) a superposition of ±5 OAM states,

cþ 5þc� 5

� �
=
ffiffiffi
2
p

, generated by a phase mask; and (d) OAM of þ 10, cþ 10, produced by a spiral phase plate. Scanning electron microscopy (SEM)

images of the devices used to generate the analysed electron beams are provided in the insets of their respective spectra.
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OAM expansion coefficients c‘33, concerning the interaction of a
magnetic field with electron beams.

Data availability. All relevant data are available from the authors
on reasonable request.
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(a) Scanning electron microscopy (SEM) image of the analysed magnetic
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(curve) and obtained (bars) OAM spectrum acquired by the electron beam

upon interacting with the magnetic bar. The expected curve was calculated

assuming that its magnetic field is saturated. Unlike the measurement

performed in (b), the experimental data were obtained while the dipole was

exposed to a field in the condenser plane of the electron microscope.
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