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We show that standard approximations in nonlinear optics
are violated for situations involving a small value of the lin-
ear refractive index. Consequently, the conventional equation
for the intensity-dependent refractive index, n�I �� n0�n2I ,
becomes inapplicable in epsilon-near-zero and low-index me-
dia, even in the presence of only third-order effects. For the
particular case of indium tin oxide, we find that the χ �3�, χ �5�,
and χ �7� contributions to refraction eclipse the linear term;
thus, the nonlinear response can no longer be interpreted as
a perturbation in these materials. Although the response is
non-perturbative, we find no evidence that the power series
expansion of the material polarization diverges. © 2017
Optical Society of America
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Nonlinear optical effects are crucial to many applications in
photonics, performing essential functions in lasing, frequency
conversion, and entangled-photon generation, among others
[1–4]. Due to the small intrinsic nonlinearities of common
photonic materials, there has long been the desire to increase
optical nonlinearities in order to increase conversion efficien-
cies, miniaturize device footprints, and reduce power require-
ments in optical devices. Much of the recent work has been
towards enhancing nonlinearities by structuring materials, for
example, using high-Q micro-cavities [5–7] or photonic crys-
tals with slow light propagation [7,8].

Recently, a class of low-index materials called epsilon-near-
zero (ENZ) materials, whose real part of the electric permittivity
ϵ 0 vanishes at a certain wavelength, has emerged as a promising
platform to achieve unprecedented large nonlinear responses
[9–11]. For example, in indium tin oxide (ITO), the nonlinear
contribution to the index of refraction Δn has achieved a value
of 0.72 [9]. This value is considerably larger than what has been
achieved in highly nonlinear chalcogenide glasses (Δn ≈ 10−6)
[12–14], and could enable all-optical switching in a propagation
length smaller than a single wavelength. With recent develop-
ments in the integration of zero-index metamaterials, whose

zero-refractive-index wavelength can be arbitrarily selected to
suit the application [15–19], it has become critical to conduct
an in-depth investigation of the nonlinear optical response of
low-index media.

The recently demonstrated magnitude of nonlinear re-
sponses of ENZ materials is paradigm-shifting, and questions
certain established fundamental assumptions in the field of
nonlinear optics. For example, in a recent publication on the
nonlinearity of aluminum-doped zinc oxide (AZO), the au-
thors claim that “the ENZ nonlinearity in AZO [is] in a regime
where the approximation of expanding the material polariza-
tion in a power series breaks down” [10]. Here, we theoretically
and experimentally explore the consequences of a vanishingly
small permittivity on the nonlinear optical response.

We begin by deriving an expression for the intensity-
dependent index of refraction caused solely by the third-order
nonlinear susceptibility χ�3�. For simplicity, we assume a cen-
trosymmetric material and neglect the tensor nature of the sus-
ceptibility, as well as material magnetic responses. This set of
assumptions is reasonable for most nonlinear optical materials [4].

To the lowest nonlinear order, the polarization of a material
illuminated by a monochromatic laser field is described as

PTOT � P � PNL � ϵ0E �χ�1� � 3χ�3�jE j2�: (1)

Here, E is the complex amplitude of the applied electric field and
χ�1� ≡ ϵ�1� − 1 corresponds to the linear response of the material,
with ϵ�1� being the linear relative permittivity. Thus, the relative
permittivity, including only the χ�3� nonlinearity, is

ϵ � ϵ�1� � 3χ�3�jE j2: (2)

Since all of these quantities may be complex, we define the
complex relative permittivity as ϵ � ϵ 0 � iϵ 0 0 and the complex
refractive index as n � n 0 � in 0 0, where a single prime denotes
the real part, and the double prime denotes the imaginary part,
respectively. These two quantities are related by [20]

n � ffiffiffi
ϵ

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ�1� � 3χ�3�jE j2

q
: (3)

Together, these equations can be used to obtain the com-
plex, intensity-dependent index of refraction n due to third-
order contributions. We find that

Letter Vol. 42, No. 16 / August 15 2017 / Optics Letters 3225

0146-9592/17/163225-04 Journal © 2017 Optical Society of America

https://orcid.org/0000-0001-9818-8491
https://orcid.org/0000-0001-9818-8491
https://orcid.org/0000-0001-9818-8491
https://orcid.org/0000-0003-4204-3781
https://orcid.org/0000-0003-4204-3781
https://orcid.org/0000-0003-4204-3781
https://orcid.org/0000-0002-5745-0139
https://orcid.org/0000-0002-5745-0139
https://orcid.org/0000-0002-5745-0139
mailto:orad@reshef.ca
mailto:orad@reshef.ca
https://doi.org/10.1364/OL.42.003225


n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n20 � 2n0n2I

q
; (4)

where we take n0 �
ffiffiffiffiffiffiffi
ϵ�1�

p
to be the linear refractive index, I to

be the optical field intensity

I � 2Re�n0�ϵ0cjE j2; (5)

and we introduce the standard definition for the nonlinear
index of refraction [4,20]

n2 �
3χ�3�

4n0Re�n0�ϵ0c
: (6)

In order to obtain a simpler relation for n, Eq. (4) is usually
expanded in a power series under the assumption that
j2n2I∕n0j ≪ 1 [4], yielding

n � n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

n2I
n0

s
≈ n0

�
1� 1

2

�
2
n2I
n0

�
�…

�
: (7)

In most materials, j2n2I∕n0j is very small so that only the low-
est order correction term is kept, resulting in the intensity-
dependent refractive index being widely defined as

n � n0 � n2I : (8)

Hence, the change of the refractive index due to the nonline-
arity is Δn � n − n0 ≈ n2I .

At this point, we pause to address a few concerns with this
derivation when considering a vanishingly small index. First,
in an ENZ material, Δn∕n0 can be larger than unity (e.g., in
Al-doped ZnO, this ratio has been shown to equal 4.4 [10]). In
this case, the assumption that permits the power series expan-
sion of Eq. (7) and leads to Eq. (8) is violated. Therefore, this
power series strictly does not converge, and Eq. (8) is not a valid
approximation of the intensity-dependent index of refraction.

Second, Eq. (4) reveals an issue that is not immediately ap-
parent from Eq. (8). As jn0j → 0, n approaches zero as well,
appearing to eliminate all refraction, including any nonlinear-
ities. This conflict in fact also exists within Eq. (8)—as
jn0j → 0, the optical field intensity vanishes while, simultane-
ously, n2 → ∞, leaving their product �n2I� in Eq. (8) seem-
ingly undefined. Note that n0 is only introduced in the
nonlinear contribution to Eq. (4) in order to obtain Eq. (8) in
the appropriate limit, and it is this factor of n0 that leads to the
ostensible divergence of n2 for low-index materials. No artificial
effects of this kind appear when we phrase the nonlinear optical
response purely in terms of the susceptibility and the electric
field. χ�3�jE j2 remains a robust measure of the nonlinear re-
sponse, even when n2 and I take on exceptional values.

Thirdly, it is confounding to accurately interpret what it
means to have an intensity that is identically zero when Re�n0�
vanishes in Eq. (5). When employing the optical field intensity
instead of the complex field amplitude, we also need to address
whether n0 or n should be used in its definition, which is typ-
ically not an important consideration when Δn ≪ 1.

We must conclude that it does not seem beneficial to intro-
duce n2 or the nonlinear index of refraction, as defined in
Eq. (8), in the context of low-index materials. In order to avoid
these issues, we posit that it is preferable to use the intensity-
dependent index of refraction, as defined in Eq. (3), with the
square root, the nonlinear susceptibility, and the electric field
amplitude directly. Though this equation is present in standard
textbooks on nonlinear optics [4], it appears only as a step in
the derivation for Eq. (8). Here, we have identified, to the best

of our knowledge, the first case where its use becomes necessary
to model the optical response.

We demonstrate the significance of these insights by con-
sidering experimental results. Except where explicitly stated,
we focus our discussion on the single wavelength where the
linear permittivity Re�ϵ�1�� � 0, which typically corresponds to
the wavelength where the index is at its lowest, andΔn has been
shown to attain its peak value [9]. In the experiment, originally
reported in Ref. [9], the transmission and reflection are mea-
sured through a thin film as a function of intensity. Since the
index change is so large, the Fresnel coefficients at the boun-
daries of the film change dramatically, which allows for the de-
tection of measurable changes in these quantities as a function
of intensity. We then extract both the real and imaginary parts
of the refractive index from the measured transmission and
reflection using a transfer-matrix method [21]. The measure-
ments are performed on a 310 nm thick film of ITO using
150 fs pulses at an oblique angle of 30°. The linear permittivity
of ITO has a zero-crossing at λ � 1240 nm and a correspond-
ingly large nonlinearity at this wavelength [9]. However, it does
not exhibit a true instantaneous Kerr nonlinearity, as the material
exhibits a finite optical recovery time [22,23]. Additionally,
extracting nonlinear coefficients using this method will be highly
dependent on external factors other than the microscopic proper-
ties of the material. For these reasons, we denote the nonlinear
orders of the susceptibility as effective susceptibilities and re-
strict our discussion to a fixed pulse width, wavelength, and
angle of incidence.

We begin by examining input intensities up to
50 GW∕cm2, above which higher-order nonlinearities begin
to make significant contributions to refraction. We present
the outcome of this measurement in Fig. 1 as a function of
the free-space incident pulse intensity I0. We also plot
Eq. (8) for comparison, using values extracted from independent
ellipsometry and Z -scan measurements (Re�n0� � 0.44 and
Re�n2� � 0.016 cm2∕GW) [9,24]. This equation provides
an adequate estimate of the index at low intensities, but quickly
fails to describe the refractive index as the intensity increases.

Fig. 1. Intensity-dependent index of the refraction of ITO at
λ � 1240 nm, where the real part of the linear permittivity ϵ�1� vanishes.
Equation (8) performs poorly at describing the refractive index at most
intensities (dashed blue line). Using Eq. (3), we obtain much-improved
agreement with the measurement without additional fit parameters (red
line). I0 and E refer to the free-space intensity and the corresponding
field magnitude for a plane wave inside the material, respectively.
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In comparison, we plot Eq. (3) using these same material values.
The resulting curve follows the measured refractive index much
more accurately. We stress that the form of this curve is due solely
to the square-root nature of Eq. (3); it is not caused by any ab-
sorption-based saturation effects or higher-order contributions to
the nonlinear susceptibility. Recall that this form of the equation
has been derived assuming only third-order contributions to the
nonlinear polarization. Our treatment is different from a polyno-
mial fit to the refractive index, since it preserves the original def-
inition of n2 and describes some of the nonlinear behavior, even
in lowest order. At higher input intensities, the curve begins to
deviate significantly from the measured values, due to the emer-
gence of higher-order nonlinear effects. We discuss the contribu-
tion of these nonlinearities to refraction in the following.

The nonlinear polarization PNL�E� can be defined to be a
complex function of the electric field amplitude. Its explicit
form may depend highly on the experimental realization and
the microscopic model that describes the material. Therefore,
its analytical form might not be accessible at all. In the present
context, we are content with expanding the nonlinear polariza-
tion in a power series and describing the interaction by its macro-
scopic properties. Thus, our method can be applied even if there
exists no good microscopic model for the material response.

For a single-beam input, we represent the material polari-
zation with the following power series:

PTOT�E� � ϵ0E
X∞
j odd

cj χ�j�jE jj−1; (9)

where cj is a degeneracy factor [4]. We have included only odd
orders of χ�j� because only those contribute to refraction.

We extract ϵ from Eq. (9) and fit to the real and imaginary
parts of the intensity-dependent refractive index of ITO for
intensities up 275 GW∕cm2. The resulting curve correctly de-
scribes both n 0 and n 0 0 at all intensities (Fig. 2). The extracted
χ�j� values are listed in Table 1. The real part of n2 calculated
using χ�3� extracted in this process is Re�n2� � 0.016 cm2∕GW,
in agreement with the previous measurement.

We use Pearson’s statistical chi-squared value to determine
the most appropriate fit for this dataset [25]. Fits with fewer
nonlinear orders than χ�7� yield a significantly larger statistical

error (i.e., larger chi-squared). Including orders beyond χ�7�

only improves the statistical error marginally, indicative of over-
fitting. We thus attribute the nonlinear refraction of ITO to
χ�3�, χ�5�, and χ�7� nonlinearities at the investigated intensities.

To examine the contributions of different orders to the re-
fractive index, we plot them as functions of intensity in Fig. 3.
At the highest input intensities, the linear refractive index
makes only the fourth largest contribution to the total refractive
index, providing further evidence that nonlinear optical effects
cannot be treated solely as perturbations to linear optics. In fact,
for an accessible range of operating intensities, nonlinear effects
dominate the optical response of this material.

At the maximum utilized pump intensity, Imax �
275 GW∕cm2, the χ�5� term makes the largest contribution
to the total refractive index; this term contributes more than
the χ�3� term, which is typically considered to be the dominant
mechanism for n2 and Δn. Additionally, the χ�7� term is also
significant, accounting for 20% of the total susceptibility.

Next, we use these extracted values to directly address
whether the large nonlinearities that have been observed in
ENZ materials violate traditional formulations of nonlinear
optics that are based on the power series expansion of the
nonlinear polarization.

The convergence of the power series in Eq. (9) can be
determined using the ratio test

lim
j→∞

���� cj�2 χ
�j�2�jE jj�1

cj χ�j�jE jj−1
���� < 1: (10)

When this inequality is satisfied, the series converges. Thus, we
see that Δn∕n and n2 are not the relevant quantities for a dis-
cussion on convergence of the nonlinear polarization, even

Table 1. Values Extracted from the Fit to Eq. (9) with a
Third-, Fifth-, and Seventh-Order Nonlinearity

j Re�χ ��j�∕�10−9m∕V�j−1 Im�χ ��j�∕�10−9m∕V�j−1
1 −0.980� 0.008 0.36� 0.01
3 1.60� 0.03 0.50� 0.05
5 −0.63� 0.02 −0.25� 0.04
7 �7.7� 0.3� × 10−2 �3.5� 0.8� × 10−2

Fig. 2. Despite the saturation behavior at high intensities, we can
correctly fit both the real and imaginary parts of the index of refraction
of ITO for intensities up to 275 GW∕cm2 with the addition of
appropriate χ�5� and χ�7� terms.

Fig. 3. Absolute contribution of the various orders of the nonlinear
susceptibility to the refractive index of ITO at the wavelength where
Re�ϵ�1�� � 0. These contributions are estimated using the values for
χ�j� in Table 1.
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though their magnitude is critical to the convergence of Eq. (7).
Instead, the various nonlinear orders of the susceptibility χ�j�

determine its convergence. We note from Fig. 3 that the first
few terms in the series violate the inequality since, at the maxi-
mum intensity investigated, the fifth-order contribution to re-
fraction (7.6� 0.3) is larger than the third order-contribution
(5.30� 0.09) which, in turn, is larger than the linear contri-
bution (1.043� 0.004). However, the corresponding ratio be-
tween the χ�7� and χ�5� terms obeys the criterion in Eq. (10).

Though we have no access to the coefficients in the limit of
j → ∞, we remark that they must be negligible at the inves-
tigated intensities, since we can accurately fit to the refraction
without them. For example, χ�9� was not found to be sta-
tistically different from zero; therefore, its contribution to the
refractive index is insignificant, even at the maximum intensity
investigated and, in particular, must be smaller than the seventh-
order term, obeying the convergence criterion. Thus, we con-
clude that the large nonlinear index of refraction that is observed
in ENZ materials is nonetheless consistent with a power series
description of the nonlinear polarization.

The above treatment and discussion prominently demon-
strate that there is indeed a need to reinterpret established
quantities related to the optical response in materials with small
indices of refraction. We conclude that, in this unique scenario,
it is no longer appropriate to use the approximation of the
intensity-dependent index of refraction that only depends
linearly on the intensity, even when only accounting for χ�3�
nonlinearities. Instead, we have introduced a more general
equation with a square-root dependence. The linear slope with
which the community is familiar is merely a special case of
Eq. (3) for when the linear index is large. Because it is based
on so few assumptions, our method will continue to work in
cases that are not explicitly considered in this Letter, such as if
jn0j ≫ 0 or jΔn∕nj ∼ 1. The generalized equation developed
here has the benefit of preserving the standard historical defi-
nition of n2 as a function of χ�3� [Eq. (6)], as well as the physical
definition of n2 as the initial slope for the refractive index with
respect to the applied optical intensity, i.e., n2 ≡ limI→0∂n∕∂I .
However, since the definition of n2 is problematic in the
context of low-index materials, χ�3� or Δn should be used to
characterize materials, instead.

We have demonstrated how to extend our generalized equa-
tion to incorporate higher-order nonlinear terms and absorp-
tion. Besides the assumption that the nonlinear susceptibility
can be expanded in a power series, this treatment tracks the
measured refraction for intensities up 275 GW∕cm2 without
the need for a detailed microscopic model or empirical satura-
tion equations [26,27]. Though our treatment cannot make
predictions for even higher intensities, it enables quantitative
statements regarding the convergence of the material polariza-
tion. It may also be used to systematically estimate the magni-
tude of higher-order contributions. Incidentally, we have shown
that the nonlinear properties of ITO are even more striking
than previously realized. At the highest probed intensities, the
index of refraction is dominated by a fifth-order nonlinearity
whose contribution grows roughly with I 2. We have also
detected significant contributions to refraction caused by sev-
enth-order nonlinearities. The nonlinear contributions from
χ�3�, χ�5�, and χ�7� terms each exceed the linear refraction term,

making ENZ materials, to the best of our knowledge, the first
solid-state platform to possess this property.

Finally, we have quantitatively shown that there is no evi-
dence that the power series expansion for the nonlinear polari-
zation in ENZ materials diverges at the wavelength where the
linear permittivity vanishes. However, the dominant higher-
order nonlinear contributions that have been observed reveal that
ENZ materials operate in a regime where nonlinear optical
effects can no longer be treated as a perturbation to linear optics.
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