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Abstract

We describe how quantum features of light fields become modified upon propagation through absorbing and amplifying media. Both
absorption and amplification add noise to a beam of light. We examine the extent to which quantum features remain after this noise is
added. We also examine the question of whether certain quantum states are more robust than others against degradation due to loss.
Quantum states of this sort would constitute an important resource for use in quantum information processing. We quantify this thought
by determining how the integration time required to achieve a specified signal-to-noise ratio increases in the presence of transmission
losses. We find that under certain circumstances the required integration time increases more rapidly with transmission loss for measure-
ment strategies based on coincidence detection of entangled photons than for strategies based on the properties of squeezed light.
� 2008 Elsevier B.V. All rights reserved.

1. Rationale for this study

Are measurement strategies based on coincidence detec-
tion of entangled photons more robust against degradation
due to loss than those based on the use of squeezed light?
Or is it the converse that is true? The arguments supporting
either conjecture are sometimes heard. The argument in
support of the increased robustness when using entangled
photons is that one can use post selection and simply reject
events in which a photon is lost. However, the integration
time required to acquire a requisite number of coincidence
events increases rapidly with system loss. In contrast, when
performing measurements based on the properties of
squeezed light, attenuation of the light beam reduces both
the intensity of the light and the amount of squeezing that
is present. In this sense, squeezed light is more susceptible
to degradation due to attenuation than is coincidence

detection. Also, there is no way to recover the loss of
squeezing by a process analogous to post selection. In this
paper we perform a careful examination of how the quan-
tum features of light fields are degraded upon propagation
through attenuating and amplifying media, with the goal of
determining the sense in which certain quantum states are
more useful than others at performing certain types of
measurements.

2. Review of earlier work

As a first step, we present a review of some of the rele-
vant scientific literature.

Shimoda et al. [1] and Haus and Mullen [2] have pre-
sented analyses that treat the amount of noise added to a
light wave by a laser amplifier. The second of these papers
establishes the oft-quoted result that the noise figure of a
high-gain optical amplifier can be no smaller than 2.0.

Hong et al. [3] describe how quantum features (sub-
Poissonian statistics and squeezing) are modified by the
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amplification achieved by a ‘‘three-level” laser amplifier.
This analysis does not necessarily apply to other types of
amplification, such as that resulting from optical param-
atreic amplification. Their conclusion is the following: an
amplitude gain G greater than

ffiffiffi
2
p

will always remove
squeezing and sub-Poissonian statistics from a light field.
If the amplifier is fully inverted, a gain of

ffiffiffi
2
p

is required.
If the amplifier is partially inverted (N 2 > N 1 but N 1 non-
vanishing; where N 1 and N 2 are the lower and upper pop-
ulation densities, respectively) the gain required to remove
quantum features is ð2N 2=ðN 1 þ N 2ÞÞ1=2 which can be much
smaller than

ffiffiffi
2
p

. They also address the more general issue
of the conditions under which the output cannot show any
non-classical features. They take as the sufficient condition
for classical behavior that the phase space density /ðvÞ be
positive semi-definite. They find that the condition for a
purely classical output, for any input, is G >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2=N 1

p
.

Note that for a four-level laser (that is, a laser for which
N 1 ¼ 0) this condition can never be achieved. Thus, for
such a laser amplifier, the gain can be arbitrarily large
and still allow the possibility of some quantum features
in the output of the amplifier.

Agarwal and Tara [4] present an analysis of the transfor-
mation of non-classical states of light by an optical ampli-
fier. They make use of the P distribution. Their primary
interest is the situation in which the output of the amplifier
shows neither squeezing nor sub-Poissonian statistics but
still possesses non-classical features. Thus, the condition
for removing squeezing and sub-Poissonian statistics from
a beam of light is different from that of removing all quan-
tum features of a beam of light. In particular, more noise
must be added (that is, there must be more amplification)
to remove all quantum features than simply to remove
squeezing or sub-Poissonian features. It should be borne
in mind that the conditional removal of photons can lead
to a whole new class of states. For example, in a more
recent work [5], it has been shown that if a single photon
is removed from a squeezed vacuum state, the resulting
state is still highly non-classical.

Loudon [6] presents an analysis of the propagation of
non-classical light. His results are best summarized by
quoting several sentences from his conclusion: ‘‘Non-classi-
cal features tend to survive transmission through an atten-
uating slab, although their magnitudes may be reduced.
The effects of transmission through an amplifying slab
are more drastic, and non-classical features are usually lost,
even for modest values of the gain. Thus for the phase-
insensitive amplification considered here, both the antibun-
ching and squeezing effects are lost for intensity gains with
maximum values of order 2.” A more detailed analysis of
the same system was published by Artoni and Loudon [7]
the following year. Their approach is to determine the con-
sequences of a Langevin noise source that must accompany
the presence of a gain or loss term.

Kim et al. [8] note that a beam splitter can be used to
create entangled output fields. They show that the neces-
sary condition for the output fields of a beam splitter to

show entanglement is that the input fields show non-classi-
cal behavior. In an earlier work, Diament and Teich [9]
study in great detail the changes in photon statistics of a
light beam as it propagates through a travelling-wave
amplifier. However, they deal explicitly with more tradi-
tional states.

Leuchs and Andersen [10] present a review of the effects
of dissipation on quantum states of the radiation field. The
first two sentences of their abstract are quoted here: ‘‘We
point out similarities in the evolution of different types of
non-classical light fields. Generally, Fock and Cat states
are considered to decay much faster under dissipation than
do squeezed states.”

3. Review of some simple quantum optics systems

3.1. Conversion from squeezing to entanglement by a beam

splitter

Several recent studies have made use of the properties of
a beam splitter to convert squeezed light into entangled
light beams. For example, Furusawa et al. [11] made use
of this conversion in their demonstration of unconditional
quantum teleportation. In this experiment, two squeezed
vacuum fields were made to interfere on a beam splitter.
This situation (along with other related processes) has been
analyzed in detail by Leuchs et al. [12]. This paper presents
a very good intuitive explanation of why a beam splitter
converts squeezing at the input into entanglement of the
fluctuations at the output. In addition, Silberhorn et al.
[13] have performed an experiment demonstrating that it
is possible to create two independent, amplitude-squeezed
light fields by means of the Kerr nonlinearity of an optical
fiber and then allow these fields to interfere at a beam split-
ter to form two entangled light fields. In this experiment,
the authors demonstrated entanglement by showing that
if they measured the amplitude fluctuations in one output
port, they were strongly correlated (that is, to better than
the shot-noise limit) to those in the other output port. Con-
versely, if they chose to measure the phase noise in one out-
put beam, it was strongly correlated to that in the other
output beam.

3.2. Influence of attenuation on squeezing

The influence of attenuation on squeezing is well treated
in the book of Bachor and Ralph [14]. Here we summarize
their conclusions. Let the variance along each principal
axis of the squeezing ellipse be V 1 and V 2 so that
V 1 ¼ expð�2rÞ and V 2 ¼ expð2rÞ, where r is the squeezing
parameter. Let g be the intensity transmission of the linear,
phase-insensitive attenuator, which is conveniently mod-
eled as a beam splitter. Then it is easy to show that

V 1ðoutÞ ¼ gV 1ðinÞ þ ð1� gÞ ð1Þ

Here the second term can be interpreted as the influence of
vacuum fluctuations entering through the additional port
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of the beam splitter. This result can be rewritten as
½1� V 1ðoutÞ� ¼ g½1� V 1ðinÞ�. This form is particularly use-
ful, as the quantity 1� V can be interpreted as the degree
of noise reduction, which is seen to decrease linearly with
attenuation. Note that some degree of squeezing will re-
main even for arbitrarily small values of g, but the effect
is unlikely to be useful for losses greater than about 50%.
One can also ask whether the output remains a minimum
uncertainty state if the input is a minimum uncertainty
state. One finds by multiplying the equation for V 1ðoutÞ
by an analogous equation for V 2ðoutÞ that V 1ðoutÞ
V 2ðoutÞ ¼ ½gV 1ðinÞ þ ð1� gÞ�½gV 1ðinÞ þ ð1� gÞ�. A plot of
this form is shown in the book. One finds that the uncer-
tainty product exceeds unity except for g ¼ 1 (no loss)
and for g ¼ 0 (complete loss, because the vacuum state is
itself a minimum uncertainty state). For all other values
of g, the output is a mixed state and clearly is not a mini-
mum uncertainty state.

4. Are some quantum states more robust against attenuation

than others?

We first address this question at a conceptual level by
considering two different representative applications of
quantum states of light:

1. Enhanced measurement sensitivity using squeezed light.

This is the situation analyzed by Bachor and Ralph that
is described above. We saw that there is no fundamental
limit to how much loss squeezed light can experience,
but that the benefits of using squeezed light are largely
eliminated for a loss of greater than about 50%.

2. Ghost imaging (and other measurements involving coinci-

dence detection). Let us consider the standard configura-
tion for ghost imaging, as illustrated in Fig. 1. Here
pairs of entangled photons are created in a nonlinear
crystal by means of the process of spontaneous paramet-
ric downconversion. For the present, we assume that the
pump intensity is sufficiently low that there is negligible
chance that more than two photons will be generated
during the resolution time of the detection system.

We consider the influence of loss (for instance, less-than
unity quantum efficiency of the detectors) in either of the
two pathways. Because the procedure utilizes coincidence
detection, if either of the detectors does not fire, the result
will be that no count is registered for that event. Thus, the

only consequence of loss will be to increase the integration
time required to obtain an image of prescribed quality. The
integration time will be increased by the factor ðg1g2Þ

�1,
where g1 and g2 are the transmissions of the two arms. This
conclusion should be examined with some care, because it
is perhaps not immediately clear that excess noise is not
introduced by the loss of quantum efficiency. For instance,
if the object is an amplitude object and the bucket detector
does not fire, this could mean either that the photon was
absorbed by the object (which conveys information about
the object) or that the photon hit the detector but the detec-
tor did not fire (which seems to convey inaccurate informa-
tion about the object). Since there is uncertainty as to
which of these events occurred, it seems as if noise is intro-
duced into the measurement process. But in fact this noise,
if we are to call it noise, is simply accounted for by a
decreased count rate. This conclusion can be seen from
the argument presented in Fig. 2. We see that the dark
regions of the object will show up dark in the coincidence
image, because no signal photons hit the bucket detector
in this case. But we also see that, the bright regions will
show up bright, but with a decreased count rate.

5. Mathematical modeling of the influence of attenuation on

squeezing

In this section we develop a mathematical model of the
two prototypical quantum detection systems shown in
Fig. 3. In both cases, the light source is an unseeded optical
parametric amplifier (OPA) of arbitrary gain. The common
situation of spontaneous parametric downconversion is
thus included as the limit of low gain. We treat the situa-
tion of arbitrary OPA gain both for generality and for
the practical reason that many applications require the
use of an intense light source. In part (a) of the figure we
consider detection based on coincidence count rates and
in (b) we consider detection based on squeezed light gener-
ation. In both cases, we are concerned with how the statis-
tical properties of the detection process are modified by the
presence of attenuator or amplifiers placed at various loca-

PDC

photodetector array

"bucket" detectorobject

coincidence
circuitry

entangled photon pair

Fig. 1. Ghost (or coincidence) imaging.

x

x

T(x)

C(x)
η1η2 = 1

η1η2 = 0.5

a

b

Fig. 2. (a) Transmission of object as a function of the transverse
coordinate. (b) Coincidence count rate as a function of position in the
lower arm of the setup of Fig. 1. Note that the only consequence of loss in
either arm is a decrease in count rate.
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tions in the optical system. We denote the amplitude trans-
mission of the attenuator/amplifier as t, where j tj2 < 1 for
an attenuator and j tj2 > 1 for an amplifier.

We represent the quantum state of the optical field leav-
ing the OPA as [15,16]

jWi ¼ ð1� q2Þ1=2
X1
n¼0

qnjn; ni ð2Þ

where the notation j n; ni indicates that there are n photons
in the signal mode and n photons in the idler mode and
where

q ¼ iei/ tan hjGj ð3Þ
with G ¼ jGj expði/Þ is the gain parameter proportional to
the intensity of the pump field.

Our primary interest is in how a quantum light field
becomes modified upon passing through an attenuator or
an amplifier. We represent the action of an attenuator as

aout ¼ t ain þ fa ð4Þ
Here fa is an operator that represent the noise added to the
light beam as a consequence of the attenuation process. To
determine the nature of this noise operator, we note that
the photon operators must obey standard commutation
relations, that is,

½aout; ayout� ¼ 1 and ½ain; a
y
in� ¼ 1 ð5Þ

The simultaneous validity of these relations requires that
the noise operator fa be present and obey the commutation
relation

½fa; f ya � ¼ ð1� jtj
2Þ ð6Þ

where we assume that

hf ya fai ¼ 0 and consequently that hfaf ya i 6¼ 0 ð7Þ
We are now ready to determine how the presence of loss

modifies each of the detection processes. We first consider
the situation shown in part (a) of Fig. 3. In this situation,
the count rate at detector Da is given by hayai, the count

rate at detector Db is given by hbybi, and the joint detection
rate is given by hayabybi, where the field operators are to be
evaluated at the detector after passing through any attenu-
ators or amplifiers, and where we are using the notation
hayai ¼ hw j aya j wi, etc, where j wi is the state of the light
field. Using Eqs. (2), (6), and (7) we find that

hayoutaouti ¼ jtaj2hayinaini ¼ jtaj2ð1� jqj2Þ
X1
n¼0

njqj2n

¼ jtaj2
jqj2

1� jqj2

 !
ð8Þ

with a similar result for mode b. We also find for the coin-
cidence count rate that

hayoutaoutb
y
outbouti ¼ jtaj2jtbj2hayinainbyinbini

¼ jtaj2jtbj2
jqj2ð1þ jqj2Þ
ð1� jqj2Þ2

" #
ð9Þ

The key conclusions are that the individual count rate for
mode i for i ¼ a; b scales with the transmission amplitude
ti as j tij2 and that the coincidence count rate scales with
the amplitude transmissions ta and tb as j taj2 j tbj2.

The analysis for the situation in which an amplifier is
placed in the light path is different from that of an attenu-
ator in that an amplifier truly ‘‘adds” noise. This situation
can be described by taking [17]

aout ¼ ta ain þ f ya ð10Þ
where now j taj2 > 1 and where commutation relations now
require that

½fa; f ya � ¼ ðjtaj2 � 1Þ ð11Þ
where we assume that

hf ya ; fai ¼ 0 and consequently that hfa; f ya i 6¼ 0 ð12Þ

We then find that

hayoutaouti ¼ hwjðt�aayin þ faÞðtaain þ f ya Þjwi ð13Þ
¼ jtaj2hayinaini þ ðjtaj2 � 1Þ ð14Þ

We thus see that there can be an output even in the pres-
ence of only a vacuum input. We similarly find that the
coincidence count rate is given by

hayoutaoutb
y
outbouti

¼ hwjðt�aayin þ faÞðtaain þ f ya Þðt�bbyin þ fbÞðtbbin þ f yb Þjwi
¼ jtaj2jtbj2hayinainbyinbini þ ðjtaj2 � 1Þjtbj2hbyinbini
þ ðjtbj2 � 1Þjtaj2hayinaini þ ðjtaj2 � 1Þðjtbj2 � 1Þ ð15Þ

For the detection of squeezing (part (b) of Fig. 3), the
analysis is somewhat more involved. To describe the degree
of squeezing, we first define the quadrature amplitude oper-
ator xh as

xh ¼ ceih þ cye�ih ð16Þ

OPA

Da

Db

Aa

Ab

OPA
Ab

Aa

Sc

Ac

a

b

a

b

c

a

b

Fig. 3. (a) Parametric downconversion leads to the generation of
entangled photons in each of modes a and b. The nature of the
coincidence counts is modified by placing an attenuator A in either
output arm. (b) The two output beams are combined at a beamsplitter to
produce squeezed light in mode c. We study the influence of attenuation
on the degree of squeezing, which is measured by the circuit shown
symbolically as Sc. The attenuators can be placed in modes a, b, or c.
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We then define the squeezing parameter S as

S ¼ ½hx2
hi � hxhi2 � 1� ð17Þ

which can alternatively be written as

S ¼ h: ðceih þ cye�ihÞ2 :i � hceih þ cye�ihi2 ð18Þ
According to this prescription, squeezing occurs if S is

negative, and for hxhi ¼ 0 perfect squeezing occurs if
hx2

hi ¼ 0 implying that S ¼ �1.
For the situation of Fig. 3b, we need to relate the

squeezed mode c to the output modes a and b of the
OPA. We define

c ¼ aþ ibffiffiffi
2
p ð19Þ

We then find (ignoring attenuation, for the present) that

S ¼ h: ðcþ cyÞ2 :i ¼ hayaþ bybi � Imhabi ð20Þ
We next note that for the h ¼ 0 quadrature the quantity
habi for the output mode can be expressed as

haoutbouti ¼ tatbhainbini

¼ tatbð1� jqj2Þq
X1
n¼0

ðnþ 1Þjqj2n

¼ tatb
q

1� jqj2

 !
ð21Þ

This result is obtained by means of a calculation similar to
that leading to Eq. (8). Thus for ta ¼ tb ¼ t,

S ¼ t2 2jqj2

1� jqj2
� q

1� jqj2

 !
¼ t2 ð2q� 1Þq

1� q2

� �
ð22Þ

Note that, for q < 1=2, S is negative, implying the presence
of squeezing. We can now determine how the degree of
squeezing depends on the presence of attenuators in modes
a and b. For the special case in which ta ¼ tb ¼ t and t is
real, we find that

Sout ¼ jtj2Sin ð23Þ
Thus, squeezing degrades less rapidly with decreasing sys-
tem transmission than does the coincidence count rate of
Eq. (9). The reason is simply that squeezing depends on
the second power of the field whereas the coincidence count
rate is fourth-order in the field.

Similar conclusions apply if the attenuator is placed in
mode c. In this case, we find that

cout ¼ t cin þ fc ð24Þ
where

hf yc fci ¼ 0 and hfcf yc i ¼ ð1� jtj
2Þ ð25Þ

It follows that

h: ðcout þ cyoutÞ
2 :i ¼ jtj2h: ðcin þ cyinÞ

2 :i ð26Þ
or again that

Sout ¼ jtj2Sin ð27Þ

We thus have verified the statement mentioned above that
squeezing is never lost by attenuation.

The analysis proceeds differently if an amplifier rather
than attenuator is placed in the light beam. We consider
the situation in which the amplifier is placed in mode c.
Through use of Eqs. (11) and (12) we find that
hc2

outi ¼ t2
chc2

ini; hc
y2
outi ¼ t�2c hc

y2
in i, and

hcyoutcouti ¼ jtcj2hcyincini þ ðjtcj2 � 1Þ ð28Þ

We then find that

Sout ¼ hc2
out þ cy2out þ 2cyoutcouti ð29Þ

¼ jtcj2h: ðcin þ cyinÞ
2 :i þ ðjtcj2 � 1Þ ð30Þ

or

Sout ¼ jtcj2Sin þ 2ðjtcj2 � 1Þ ð31Þ
Recall that jtcj > 1. We see that even for the case of perfect
squeezing at the input, Sin ¼ �1; Sout will be positive for
j tcj2 P 2. Thus amplification by a factor of two is a suffi-
cient condition for removing squeezing from a beam of
light.

6. Integration time and signal-to-noise considerations

We now consider how the integration time required to
achieve a prescribed signal-to-noise ratio depends upon
the transmission losses of a particular detection system.
Let us first consider a detection system that utilizes the
properties of squeezed light, as in Fig. 3b. For definiteness,
we assume that we desire to make an accurate measure-
ment of the noise properties of one particular quadrature
amplitude of a light field. The signal strength of the trans-
mitted field clearly decreases with increasing attenuation.
The noise in the transmitted field depends both on the
amount of squeezing in the incident field and on the level
of attenuation. Thus the signal-to-noise ratio of the trans-
mitted field depends in a complex manner on the transmis-
sion losses of the optical system. We choose to quantify our
results in terms of the required integration time because
this metric allows direct comparison to schemes based on
post selection, in which the integration time required to
acquire a prescribed number of events increases as the coin-
cidence count rate decreases.

For definiteness, we consider the situation in which the
detector produces a voltage that is proportional to the
applied optical power. For the case of balanced homodyne
detection, which is the method routinely used in the detec-
tion of squeezed light, this voltage vs is proportional to the
general quadrature amplitude hxhi introduced above. In the
following discussion, we consider a generalization of the
situation shown in Fig. 3b in which modes a and b at the
input to the OPA are not necessarily in the vacuum state,
or more generally that the squeezed light is generated by
some unspecified generic nonlinear interaction. We had
earlier assumed for reasons of convenience that we were
interested only in the case of a vacuum state input to the
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OPA. However, hxhi necessarily vanishes in this situation.
For our present considerations, which include both the sig-
nal and the noise contained in the squeezed light, it is thus
necessary to treat a situation more general than that shown
in Fig. 3b. We then define the voltage signal-to-noise ratio
(S/N) through

ðS=NÞ2 ¼ v2
s

v2
N

ð32Þ

Here the numerator v2
s is the mean-square signal voltage

and the denominator is the mean-square noise voltage.
We use this definition of the signal strength to allow the
possibility that the signal voltage is modulated in time.
We now introduce the detection efficiency g, which includes
the influence of transmission losses through the optical sys-
tem (attenuator Ac in Fig. 3b) and detector quantum effi-
ciency. If transmission losses are the dominant noise
mechanism, the detection efficiency is given by
g ¼j tcj2 ¼j tj2. We now note that v2

s will decrease with
increasing losses as ðv2

s Þout ¼ g2ðv2
s Þin, whereas v2

N will de-

crease with increasing losses as ðv2
N Þout ¼ gðv2

N Þin þ ð1� gÞ
(see also Eq. (1)). We thus find that

ðS=NÞ2out ¼
g2ðv2

s Þin
gðv2

N Þin þ ð1� gÞ
ð33Þ

It is instructive to examine this result for various limiting
cases. If the input is strongly squeezed so that ðv2

NÞin ¼ 0,
we find that

ðS=NÞ2out ¼
g2ðv2

s Þin
1� g

ð34Þ

Conversely, for the case of a coherent state (that is, an un-
squeezed, shot-noise-limited) input and making use of our
normalization convention that ðv2

N Þin ¼ 1, we find that

ðS=NÞ2out ¼
g2ðv2

s Þin
1

¼ g2ðv2
s Þin ð35Þ

Finally, if the input noise ðv2
s Þin is dominated by technical

noise, so that ðv2
NÞin is much greater than unity, we find that

ðS=NÞ2out ¼
gðv2

s Þin
ðv2

N Þin
¼ gðS=NÞ2in ð36Þ

The dependence of the output signal-to-noise ratio on
the detection efficiency g is shown in Fig. 4 for each of these
cases. Note that for unit detection efficiency the signal-to-
noise ratio achievable through use of squeezed light
becomes formally divergent, because we have assumed that
the input is perfectly squeezed and that there is thus no
noise in the quadrature of the input that is detected. Note
also that the scaling law for a coherent state input is differ-
ent from that of an input dominated by technical noise.
These graphs should not be interpreted as implying that
certain of these strategies perform better than the others
for a given value of g. Rather, these curves simply indicate
how the performance of each of these strategies scales with
the efficiency g of the detection process.

Let us now consider how the integration time required
to achieve a specified signal-to-noise ratio varies with the
efficiency parameter g. We recall the basic result of signal
averaging which asserts that the signal-to-noise ratio
ðS=NÞM obtained from averaging M independent measure-
ments is larger than that of a single measurement ðS=NÞout

according to

ðS=NÞM ¼
ffiffiffiffiffi
M
p

ðS=NÞout ð37Þ
Thus the number of measurements that need be averaged
to achieve a specified signal-to-noise ratio, or equivalently
the required integration time, depends on g according to

M /
ffiffiffiffiffiffiffiffiffiffiffi
1� g
p

g
ð38Þ

for a fully squeezed input, to

M / 1

g
ð39Þ

for a coherent state input, and

M / 1ffiffiffi
g
p ð40Þ

for an input dominated by technical noise.
We next consider the case of coincidence detection, such

as in the examples shown in Figs. 1, 2, and 3a. For defini-
tiness, we assume that the transmissive portions of the
object of Figs. 1 and 2 have unit transmission. If both arms
possess the same detection efficiency, we find that the coin-
cidence detection rate scales as j tj4. Thus the detection time
required to obtain a prescribed number of detection events
scales with g ¼j tj2 as M / 1=g2.

These various situations are compared graphically in
Fig. 5. These curves are normalized such that the integra-
tion time parameter M is equal to unity for g ¼ 1 for all
cases except that of perfectly squeezed light, in which case
M ¼ 0 for g ¼ 1 as there is assumed to be no noise in the
detection process. In all cases, the required integration time
increases as the detection efficiency decreases. But the rate

0 1.00.5
0

2.0

1.0

coherent state

squeezed

detection efficiency η = |t|2

S/
N

with technical noise

Fig. 4. Variation of the signal-to-noise ratio with detection efficiency for
the various situations described in the text.
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at which the required integration time increases is different
for different measurement strategies. For g only slightly
smaller than unity, measurements based on squeezing are
degraded most rapidly by attenuation: the integration time
parameter M increases from zero to a non-zero value. But
for values of g of 0.5 or smaller, the integration time
parameter M increases most rapidly with decreasing effi-
ciency for measurements based on coincidence detection.
Furthermore, we note that if only one arm of the coinci-
dence detection setup possesses limited detection j tj2 effi-
ciency whereas the other arm possesses unit efficiency, the
integration time parameter M scales as 1=g ¼ 1= j tj2,
which is identical to that of the curve labeled ‘‘coherent
state” in the figure.

7. Conclusions

We now summarize the conclusions that we have
reached in our study.

Attenuation does not remove squeezing entirely from
a beam of light. Squeezing is reduced at the same rate
as the intensity of the light beam. This result is shown
in Eq. (23). Amplification can remove squeezing com-
pletely from a beam of light. Amplification by a factor
or two is sufficient to remove all squeezing from a light
beam. This result follows from Eq. (31). Both of these
results have been well known for many years (see, for

instance [6,7]). Our intent has been to re-derive these
results in terms of the more general study presented in
this article.

In some ways, coincidence measurements are much less
influenced by attenuation than are squeezing measure-
ments. The only influence of attenuation on coincidence
measurements is to decrease the count rate. No additional
noise is introduced. This situation is quite different for the
case of squeezed light detection. Here the influence of
attenuation is two fold: it makes the beam weaker and it
decreases the amount of noise reduction. Thus, the nature
of the quantum state is fundamentally modified by the
attenuation process. For both coincidence measurements
and squeezing measurements, the integration time required
to perform a desired measurement increases with increased
optical attenuation. However, the functional dependance
on the optical loss is very different in the two cases, as is
illustrated in Fig. 5.
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Fig. 5. Scaling laws for the dependance of integration on the detection
efficiency for the various situations described in the text.
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