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Wide-Bandwidth, Tunable, Multiple-Pulse-Width Optical Delays Using Slow Light
in Cesium Vapor
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We demonstrate an all-optical delay line in hot cesium vapor that tunably delays 275 ps input pulses up
to 6.8 ns and 740 input ps pulses up to 59 ns (group index of approximately 200) with little pulse
distortion. The delay is made tunable with a fast reconfiguration time (hundreds of ns) by optically

pumping out of the atomic ground states.
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There is considerable practical interest in developing all-
optical delay lines that can tunably delay short pulses by
much longer than the pulse duration. Slow light (i.e., the
passage of light pulses through media with a small group
velocity) has long been considered a possible mechanism
for constructing such a delay line. Most commonly, the
steep linear dispersion associated with a single gain or
transparency resonance provides the group delay. Most
early work used the dispersion associated with electro-
magnetically induced transparency [1-7], but recently
other resonances have been explored, including coherent
population oscillations [8§—-10], stimulated Brillouin scat-
tering [11-14], stimulated Raman scattering [15,16], and
spectral hole burning [17].

In addition to single-resonance systems, double gain
resonances have been used for pulse advancement [18-—
23] and delay [24]. Widely spaced gain peaks create a
region of anomalous dispersion, resulting in pulse ad-
vancement. When the spacing between the gain peaks is
small, a region of normal dispersion is created, resulting in
pulse delay. Pulse advancement is also possible by the
proper spacing of two absorbing resonances [22]. The
possibility of pulse delay between two absorbing reso-
nances has also received some attention [25-30].

Ideally, an optical delay line would delay high-
bandwidth pulses by many pulse lengths in a short propa-
gation distance without introducing appreciable pulse dis-
tortion and be able to tune the delay continuously with a
fast reconfiguration rate. Minimal pulse absorption is also
desirable, but not necessary because absorption can be
compensated through amplification. Relatively few experi-
ments [1,4,7,11,17,28] have directly measured pulse de-
lays longer than the incident pulse duration, and of these,
none has used pulses shorter than 2 ns or reported reconfi-
guration rates approaching the inverse pulse delay time.

In this Letter, we demonstrate the tunable delay of a 1.6-
GHz-bandwidth pulse by up to 25 pulse widths and the
tunable delay of a 600-MHz-bandwidth pulse by up to 80
pulse widths by making use of a double absorption reso-
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nance in cesium. Furthermore, we show that the delay can
be tuned with a reconfiguration time of hundreds of
nanoseconds.

In a medium with two Lorentzian absorption resonances,
as illustrated in Fig. 1, the complex index of refraction can
be approximated as
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FIG. 1 (color online). (a) cw signal transmission (asterisks—
measured, solid line—fit) overlaid with the spectrum (dashed
line) of a 275 ps pulse and (b) index of refraction (solid line) and
group velocity (dashed line), all vs signal detuning for cesium at
approximately 114 °C. All theory curves taken from Eq. (1) with
A =4 X 10° rad/s, g, = 7/16, and g, = 9/16. High-fidelity
optical delay is observed for light pulses passing through the
nearly transparent window between the two resonances.
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For example, alkali atoms have two hyperfine levels asso-
ciated with their electronic ground state, leading to two
closely spaced absorption resonances. We note that any
other system with two similar absorbing resonances may
also be used (e.g., quantum dots, microresonators, photonic
crystals, etc.). For a vapor of alkali atoms, the detunings
satisfy A, = A_ > v, and the strength of the resonance is
given in ST units by A = N|u|?/[eoh(g, + g2)], where u
is the effective far-detuned dipole moment [31], and g; and
g, are proportional to the degeneracies of the hyperfine
levels.

Equation (1) is also applicable for inhomogeneously
broadened lines, such as Doppler broadened atomic vapors,
if the detunings A_ and A are greater than the inhomoge-
neous linewidth by an order of magnitude or more. This
result holds because the homogenous Lorentzian line shape
has long wings while the inhomogeneous line shape de-
creases exponentially.

By expanding Eq. (1) about the point § = 0, we find that
the real part n’ and imaginary part n” of the index of
refraction are given by

A A
n'(ﬁ)%l+Ko+K1—25+K3—453 (33)
w3 w3
A A
n'(8) ~ Ky b + 3Ky 2 6%, (3b)
w3 W3
where
U3 4 ol3\iv1 . , »
K = (gl > 8 ) [8(12 /3 + (_1)z+1g(22 1)/3]’ 4)

and where we have assumed that n — 1 < 1 in keeping
only the first few terms in the expansion. Note that for the
special case in which the two resonances are of equal
strength (i.e., g, = g, = &), the coefficients are given by
K; = 2g foriodd and K; = 0 for i even. For cesium, which
has g = 7/16 and g, = 9/16, the error introduced by as-
suming g; = g, is approximately 0.5%. For this reason, we
make the simplifying assumption g, = g, = 1/2 through-
out the remainder of the Letter.

Pulse propagation can be described in terms of various
orders of dispersion, which can be determined through use
of Eq. (3a) as
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Thus the group velocity is given by v, = 1/, and the
group-velocity  dispersion (GVD) and third-order-
dispersion are given, respectively, by 8, and B;. The ab-
sence of second-order (first-order) frequency dependence
in Eq. (3a) and (3b) means that near 6 = 0 the GVD
(absorption) is minimized regardless of possible differ-
ences between g; and g,. Thus, between two absorption

resonances, which can be described by Eq. (1), the maxi-
mum transparency is accompanied by a minimum in GVD.

We next develop a simple model to provide an under-
standing of the role of dispersion and absorption on pulse
broadening. We provisionally define the pulse width as
the square root of the variance of the temporal pulse
shape. For an unchirped Gaussian pulse, i.e., E(0, 1) =
Eyexp(—1*/2T}), the pulse width defined in this way is
simply T,. The pulse width after propagating through a
distance L of dispersive medium is then given to third order
in & by [32]
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where T, is the initial pulse width. In the case of cesium,
where  wy =27 X35X10%rad/s and (w, =

X 9.2 X 10° rad/s, B, can be neglected and Eq. (6)
simplifies to

3Td 2
= () ?

where (3 has been calculated using Eqgs. (5) and (3) and
where 7; =~ ayL/2y is the pulse delay and ayL =
2won"L/c is the optical depth at the pulse carrier fre-
quency wq. We further note that the change in pulse width
due to absorption only can be approximated as [28,33]
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so long as (T,/T, — 1) < 1.

The fractional broadening due to dispersion, defined as
T,/T, — 1,scales as 1/T3, while the broadening due to ab-
sorption scales as 1/T,. In the present study, 7, = 1073 s,
w, =~ 10" rad/s, Ty = 1071% s, and y =~ 107 rad/s, in-
dicating that dispersion is the dominant form of broadening
by about 3 orders of magnitude, and the absorptive con-
tribution to broadening can be ignored.

Experimentally it is much easier to quantify pulse widths
in terms of their FWHM rather than in terms of their vari-
ance as we have done in Egs. (6)—(8). In the remainder of
this Letter, we will quote pulse widths in terms of their
FWHM.

Our experimental setup is shown in Fig. 2. The signal
laser is a cw diode laser with a wavelength of 852 nm. The
signal frequency is tuned to obtain maximum transmission
between the two Cs D, hyperfine resonances and is pulsed
at a pulse repetition frequency of 100 kHz using a fast
electro-optic modulator (EOM). The signal beam is colli-
mated to a diameter of 3 mm, and two different pulse
widths are used, 275 ps or 740 ps FWHM, with a peak
intensity of less than 10 mW/cm?. The pulses then pass
through a heated 10-cm-long glass cell containing atomic
cesium vapor. The 275 ps pulses are measured using a
7.5 GHz silicon photodiode, and the 740 ps pulses are
measured with a 1 GHz avalanche photodiode. All electri-
cal signals are recorded with a 30 GHz sampling oscillo-
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FIG. 2. Experimental schematic. A signal pulse passes through
a heated cesium vapor cell. Two pump beams combine on a
beam splitter and counterpropagate relative to the signal beam
through the vapor to provide tunable delay of the signal pulse.

scope triggered by the pulse generator. The pump beams
are turned off except for the experiments reported in Figs. 5
and 6.

Figure 1(a) shows the transmission of a cw optical beam
as a function of frequency near the two cesium hyperfine
resonances, overlaid with the spectrum of a 275 ps
Gaussian pulse. The data points are measured values and
the solid line fits these points to the imaginary part of
Eq. (1). The entire pulse spectrum lies well within the
relatively flat transmission window between the reso-
nances, resulting in little pulse distortion from absorption.
Figure 1(b) shows the index of refraction [real part of
Eq. (1)] and frequency-dependent group velocity associ-
ated with the absorption shown in Fig. 1(a). We note that,
in the region of the pulse spectrum, the curvature of the
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FIG. 3. Pulse shapes of 275 ps input pulses transmitted through
a cesium vapor cell. Delays a large as 25 pulse widths are
observed. The temperature range from 90 °C to 120 °C.

frequency-dependent group velocity is greater than that of
the absorption, suggesting that dispersion is the dominant
form of pulse distortion. This is not the case for single-
Lorentzian systems, where the spectral variation of absorp-
tion is the dominant form of distortion [34]. While most
slow light experiments have worked by making highly
dispersive regions transparent, we have worked where a
highly transparent region is dispersive.

As shown above, the delay of a pulse is proportional to
the optical depth of the vapor. Figure 3 shows that we can
control the delay by changing the temperature (and thus
optical depth) of the Cs cell. Using a 10 cm cell, and
varying the temperature between approximately 90 °C
and 120 °C, we were able to tune the delay of a 275 ps
pulse between 1.8 ns and 6.8 ns. The theory curves in Fig. 3
were obtained using I(x, £) = n(0)cey|E(z, t)|?/2, where
the electric field is given by
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and where we have used Eq. (1) for the index of refraction.
The atomic density N has been chosen separately to fit
each measured pulse. We note that a pulse may be delayed
by many pulse widths relative to free-space propagation
with little broadening.

Longer pulses lead to delay with reduced pulse broad-
ening because pulse broadening is approximately propor-
tional to 1/ TS [see Eq. (7)]. To study the larger fractional
delays enabled by this effect, we used longer 740 ps input
pulses for which the dispersive broadening is significantly
reduced. Figures 4(a) and 4(b) show the delay and broad-
ening of a 740 ps pulse after passing through a sequence of
three 10 cm cesium vapor cells. The plots correspond to a
temperature range of approximately 110°C to 160 °C.
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FIG. 4. (a) Output pulse shapes and (b) fractional broadening

as functions of fractional delay for a 740 ps input pulse.
Fractional delay is defined as (7,/7T,) and fractional broadening
is defined as (T — T,)/T.
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FIG. 5 (color online). Pulse output waveforms with auxiliary
pump beams on (dotted line) and off (solid line). Two 275 ps
input pulses separated by 1 ns are delayed by approximately
5.3 ns without pumping, but only 4.3 ns with pumping (a change
of 1 bit slot) with little change in pulse shape.

Even though the pulse experiences strong absorption at
large delays, the fractional broadening of the pulse FWHM
remains relatively low.

In addition to temperature tuning, the optical depth can
be changed much more rapidly by optically pumping the
atoms into the excited state using two pump lasers. As
shown in Fig. 2 each pump laser is resonant with one of the
D, transitions in order to saturate the atoms without optical
pumping from one hyperfine level to the other. The power
of each pump beam is approximately 30 mW, and both
pump beams are focused at the cell center. The signal beam
overlaps the pump beams and is also focused to a 100 wm
beam diameter. The pump beams are turned on and off
using an 80 MHz acousto-optic modulator with a 100 ns
rise or fall time. Being on resonance with the D, transi-
tions, the pump fields experience significant absorption
(aL ~ 300), and are entirely absorbed despite having in-
tensities well above the saturation intensity.

With the pump beams on, the decreases in effective
ground-state atomic density leads to smaller delay. Fig-
ure 5 shows a delayed pulse waveform consisting of two
275 ps input pulses separated by 1 ns, with the pump on
and off. We note that pump fields create no noticeable
change in the waveform shape or amplitude. Also, we
measured that the change in delay is essentially propor-
tional to the pump power.

In Fig. 6 the measured signal delay is shown as a
function of the difference between arrival time ¢, of the
signal at the cell and the turn-on time 7,, of the pump. The
rise and fall times lie in the range 300—600 ns and vary
slightly depending on the relative detunings of the pumps.

In summary, we have observed large tunable fractional
time delays of high-bandwidth pulses with fast reconfigu-
ration rates and low distortion by tuning the laser fre-
quency between the two ground-state hyperfine reso-
nances of a hot atomic cesium vapor cell. We have shown
that in such a medium, dispersion is the dominant form of
broadening, and we have characterized the delay, broad-
ening, and reconfiguration rates of the delayed pulses.
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FIG. 6. Pulse delay vs time following pump turn-on and turn-
off, showing the reconfiguration time for optically tuning the
pulse delay. The two pump beams are tuned to separate cesium
hyperfine resonances and are switched on at the time origin and
switched off 24 us later.
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