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Abstract
Photon number resolving (PNR) measurements are beneficial or even necessary for many
applications in quantum optics. Unfortunately, PNR detectors are usually large, slow, expensive,
and difficult to operate. However, if the input signal is multiplexed, photon ‘click’ detectors, that
lack an intrinsic PNR capability, can still be used to realize photon number resolution. Here, we
investigate the operation of a single click detector, together with a storage line with tunable
outcoupling. Using adaptive feedback to adjust the storage outcoupling rate, the dynamic range of
the detector can in certain situations be extended by up to an order of magnitude relative to a
purely passive setup. An adaptive approach can thus allow for photon number variance below the
quantum shot noise limit under a wider range of conditions than using a passive multiplexing
approach. This can enable applications in quantum enhanced metrology and quantum computing.

1. Introduction

Quantum optics and quantum photonics technologies are increasingly important for applications in
domains such as sensing and computing. Many of these applications require the use of high-resolution and
efficient photon detectors. In particular, the ability to count the number of incident photons on a detector is
vital for applications including quantum-enhanced metrology [1, 2] and quantum computing [3, 4].

Important features of a photon number resolving (PNR) detector include detection efficiency and
fidelity, dark count rate, speed, ease of operation, and dynamic range. Existing detectors lack the
combination of dynamic range, detection fidelity and ease of operation that are relevant for many
applications. Although single-photon detectors (SPDs) such as avalanche photodiodes are widely available
and relatively robust, they are unable to distinguish one incident photon from a greater number, effectively
providing a binary ‘click’ signal.

Several PNR detector schemes have been developed to distinguish multi-photon events. Transition edge
sensor (TES) detectors [5, 6] and microwave kinetic inductance detectors [7] have demonstrated PNR
capabilities up to tens of photons with low noise, although they are limited by their low speed and very low
required operation temperature. Superconducting nanowire SPDs (SNSPDs) [8, 9] have high detection
efficiencies and fast count rates, but tend to saturate at low photon numbers. Hybrid photodetectors (HPDs)
which produce a linear signal with a quantum efficiency of up to 50% have also been used as PNR detectors
for applications in quantum state tomography [10] and conditional state generation [11], but these are
limited by the quantum efficiency of the photocathode, and for the device used in these applications the
efficiency drops off sharply at wavelengths greater than 740nm. CMOS detectors [12, 13] and intensified
charge coupled devices [14] have also demonstrated some PNR capability at low photon numbers, but either
have low detection efficiency or slow readout.

A PNR detector can alternatively be constructed by multiplexing the input, so that the photons can be
counted with multiple detection events from one or more SPDs. In this type of architecture, photons can be
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Figure 1. (a) A loop-based photon number resolving setup allows a pulse of photons to be stored and sent to a single-photon
detector in multiple rounds. Here, we investigate the improvements that can be offered by dynamic feedback on the outcoupling
rate ϵk, taking into account the loop efficiency η, and detector characteristics (γ and ν). (b) By dynamically adjusting the
outcoupling rate based on detection results, the detection events occur more uniformly over the measurement interval than when
the outcoupling rate is kept constant. As a result, the adaptive setup achieves fewer losses due to multiple-photon events and loop
loss than a similar passive setup. In the example simulation, γ= 0.9, η= 0.99, ν = 1× 10−6, and the initial number of photons is
40, with 21 clicks recorded by the detector.

treated as classical particles since interference does not play an important role. Each detector or time slot can
thus be treated as a bin that receives photons with a certain probability. There are several ways to characterize
PNR detectors using information theory [15] and detector tomography [16, 17], and previous studies have
compared the merits of various multiplexing-based approaches [18, 19].

In some approaches, the input signal is spatially multiplexed to an array of detectors, which can be
achieved using beam splitters [20–22] or flood illumination [23]. The latter strategy has been used in
multi-pixel photon counters (MPPCs), also known as silicon photomultipliers. Despite the high single-pixel
efficiency of MPPCs, their overall efficiency is currently limited to 40%, and are limited by optical crosstalk
and dark count rates, which contributes to increased detector noise [24]. These can be partially mitigated,
but requires paired detection and relatively large sampling rates for counting small numbers of photons
(around 10–20) [25]. A more active approach uses fast optical switches to reduce detector deadtime [26, 27],
but does not improve the detector’s actual PNR capability. These spatially-multiplexing methods have been
evaluated in detail [28], and explicit expressions for the detection probabilities have been derived [29].

There are also several methods to temporally multiplex the input signal, either by using N beam splitters
and delay lines to produce a detector with 2N equal-fraction time bins [30–32], or using a loop-based
detector consisting of a storage loop and tunable coupling ϵ to multiplex the photons into an unlimited
number of decreasing-probability time bins [33–36].

The loop-based PNR setup is distinct from the other multiplexing-based methods in that the photons can
be stored and released in a controlled way while detection clicks are recorded. This setup is constructed of
standard components: SPDs, low-loss fiber, and tunable fiber couplers. First, an input signal withN0 photons
is coupled from the input line into a fiber delay loop which has photon storage efficiency η (figure 1). After
this delay, the pulse returns to the fiber coupler, which has been tuned from full coupling (ϵ≈ 1) to a much
smaller coupling (ϵ≪ 1). Here, a fraction of the photons in the loop are sent to an SPD (having efficiency γ
and dark count rate ν), which produces a binary detection result d1 ∈ {0,1}. The majority of the photons
remain in the fiber, and the cycle repeats, with the outcoupling ratio possibly tuned after each round, which
we denote by ϵk in round k. Table 1 of appendix B has a complete list of the variables used in this paper. When
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all photons have been detected or lost after some number of rounds k, the experimenter is left with a series of
detection results d⃗k := (d1,d2, . . .,dk), from which one can estimate the initial number of photons N0.

In this work, we introduce an adaptive method of PNR detection in the loop architecture that
demonstrates improved accuracy, speed, and dynamic range. Every approach previously taken has the
limitation of being unable to adapt to the number of photons within a single measurement, due to their
static architectures. In particular, a passive multiplexing detector suited for discriminating small photon
numbers will become over-saturated at large photon numbers, while a detector suited for large photon
numbers will incur higher losses than necessary at small photon numbers. Here, we demonstrate a method of
using the real-time loop detection results d⃗k as feedback for tweaking the outcoupling rate ϵk, and evaluate
the performance of this approach using Monte Carlo simulations. This approach produces a photon-number
estimate that matches or improves on the estimate of any passive approach, while operating over a wide
dynamic range and requiring fewer detection rounds. Comparable single-shot adaptive detection has been
demonstrated for homodyne detection of optical phase [37], but not yet for photon number.

It is important to briefly mention the related but distinct task of reconstructing photon number statistics
from a series of measurements. This has been demonstrated in a number of ways, including using only SPDs
[38, 39]. Reconstructing the photon number distribution of an optical field can help determine the
properties of the beam, and is important for applications in quantum communication. Nevertheless,
reconstructing the distribution of photon numbers in the incident field is not helpful in cases when
single-shot photon-number discrimination is required, such as in quantum enhanced metrology or quantum
computing. In contrast, in this paper we present a method of producing adaptive single-shot PNR
measurements, by performing multiple measurements of the same pulse. Our method could also allow for
more efficient photon statistics reconstruction by extracting more information from each pulse, but here we
focus on analyzing the optimal detection of photon number in a single-shot measurement.

This work is divided in several sections. In section 2, we discuss Bayes’ theorem and how it applies to our
loop-based PNR setup. There, we also introduce the method we use to adaptively tune the outcoupling rate
ϵk. In section 3, we discuss how the simulations were performed, and introduce the metrics we used to
evaluate the performance of the passive and adaptive approaches under different conditions. In section 4, we
compare the merits of the passive and adaptive approaches, with respect to the earlier introduced metrics.
Finally, in section 5, we consider the performance of the adaptive approach, and possible ways this analysis
can be extended to other loop-based setups. Appendices summarizing the calculation of the Bayesian
updating probability (appendix A) and the list of variables and symbols used in this paper (appendix B) are
also included.

2. Mathematical background

The purpose of this section is twofold. First, we introduce the relevant mathematical background necessary
for performing the Bayesian estimate of the initial photon number, based on the detection results. Then, we
motivate the method we use to adaptively choose the outcoupling rate ϵk, based on the principle of
maximizing the expected ratio of information gained to information lost. All variables and distributions
introduced in this section are enumerated in table 2 of appendix B.

The first question we want to consider is: how does one obtain an estimate of the initial photon number
from the detection results? Clearly, the estimate Nest is a function of the detection results d⃗k, in addition to
being implicitly dependent on the system parameters (loop efficiency η, outcoupling rate ϵ, etc). Thus, our
goal is to find a suitable Nest(⃗dk), which we will accomplish using Bayes’ theorem.

Bayes’ theorem states that for any events A and B, the conditional probabilities P(A|B) and P(B|A) are
related:

P(A|B) = P(B|A)P(A)
P(B)

. (1)

This provides an equation that describes how beliefs (about event A) should be updated as more
information becomes known (event B). In particular, Bayes’ theorem takes a prior probability distribution
P(A) and produces a posterior probability distribution P(A|B), requiring only a conditional probability
P(B|A). In our case, we would like to find the probability that there were N0 initial photons, given the
detection record d⃗k. However, it turns out that it is even more useful to also find the probability of Nk

photons being in the loop during round k, in addition to N0 initial photons. This probability can thus be
found as follows:

P
(
Nk,N0 |⃗dk

)
=

P
(
Nk, d⃗k|N0

)
P(N0)

P
(
d⃗k
) . (2)
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Note that P(Nk, d⃗k|N0) is just the probability of recording the given detection results d⃗k, and having Nk

photons remaining in the loop, given N0 initial photons. As a probability distribution over all detection
histories, this is difficult to determine. But since we are only interested in a probability distribution over Nk

for a particular detection history, this is feasible to do.
As noted in the introduction, the photons in this setup can be modeled simply as a collection of classical

particles in the loop. As a result, the probability of a detection in any given round is determined solely by the
current number of photons in the loop. Thus, given some number of photons Nk−1 in the loop during round
k− 1, we can find the probability of Nk photons remaining in the loop, and a click either being registered or
not (which we represent by dk, taking on values 0 or 1). This we can denote as P(Nk,dk|Nk−1). This
probability implicitly depends on the parameters of the setup, including ϵk, η, γ and ν. Thus, the easiest way
to calculate the probability P(Nk, d⃗k|N0) is in a recursive manner, updating as follows:

P
(
Nk, d⃗k|N0

)
=

∑
Nk−1

P(Nk,dk|Nk−1)P
(
Nk−1, d⃗k−1|N0

)
. (3)

The term P(Nk,dk|Nk−1), described in the previous paragraph, can be calculated from the characteristics
of the setup (see appendix A), which include the loop efficiency η, outcoupling rate ϵ, detector efficiency γ
and detector dark count probability (during delay time τ ) ν. This is given by:

P(Nk,dk|Nk−1) =

{
ρ(Nk;Nk−1,η, ϵk,γ,ν) dk = 0

B(Nk;Nk−1,η (1− ϵk))− ρ(Nk;Nk−1,η, ϵk,γ,ν) dk = 1
, (4)

where

ρ(Nk;Nk−1,η, ϵk,γ,ν) = (1− ν)(1− ηϵkγ)
Nk−1 B

(
Nk;Nk−1,

η (1− ϵk)

1− ηϵkγ

)
, (5)

and B(k;n,p) is the binomial distribution function:

B(k;n,p) =

(
n

k

)
pk (1− p)n−k

. (6)

By restricting our attention to one particular detection sequence d⃗k, we can represent the probability
P(Nk, d⃗k|N0) as a (Nmax + 1)× (Nmax + 1)matrix P(⃗dk), where Nmax is a cap on the number of incident
photons we consider. The update probability P(Nk,dk|Nk−1) can similarly be represented as a matrix R(dk)
(depending implicitly on ϵk), whose elements are given by:[

P
(
d⃗k
)]

m,n
= P

(
m, d⃗k|n

)
[R(dk)]m,n = P(m,dk|n) .

(7)

Consequently, we can translate the Bayesian updating process into matrix multiplication, where the
matrix R is chosen based on whether a click was recorded during that round.

P
(
d⃗k
)
= R(dk)P

(
d⃗k−1

)
. (8)

After k= 0 rounds, no photons can have been lost, and thus P(N, d⃗0|N0) is only non-zero when N= N0.
Assuming a uniform prior on the number of photons in the loop, we know that the conditional probability
P(⃗d0) is equal to the identity matrix (where d⃗0 is the empty set). Thus, by recursively iterating this process,
we find that P(⃗dk) can be represented:

P
(
d⃗k
)
=

 k∏
j=1

R
(
dj
)P(d⃗0)

=
k∏

j=1

R
(
dj
)
.

(9)

Note that this reformulation of probabilities in matrix form does not allow us to sample all possible
histories d⃗k, but can be used to speed Monte Carlo sampling of the detector histories by taking advantage of
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Figure 2. Before each detection round k, the state of knowledge can be encoded in a posterior probability distribution for the
number of photons in the loop, both initially (N0) and in the current round (Nk). These matrices can be used to determine the
final posterior distribution for N0, and in an adaptive approach, to inform a good value for the loop outcoupling rate ϵk. In these

visualizations, we observe an evolution of the posterior probability matrix P(⃗dk) for a single realization of d⃗k, where detections

were recorded in rounds k= 2 and k= 15. Starting from a uniform distribution in Round 1, P(⃗dk) is updated in each round using
Bayes’ theorem, resulting in a distribution close to the true value (N0 = 3) in round 40. The simulation parameters are η= 0.99,
γ= 0.9, ν = 1× 10−6, and ϵ= 0.1.

matrix multiplication libraries. Additional computational efficiency can be gained by precomputing the
matrices R(d), especially if the loop coupling parameter is kept constant.

Now that we know how to update the conditional probability P(Nk, d⃗k|N0), only the prior probability
P(N0) is necessary to calculate the posterior probability P(Nk,N0 |⃗dk), as seen in equation (2). The probability
P(⃗dk) in the denominator, containing neither N0 nor Nk, merely becomes a normalization factor for the
posterior distribution. This posterior distribution is used later for the purposes of quantifying the
information gain. Further, the posterior probability P(N0 |⃗dk) for the initial number of photons can be easily
computed by summing P(Nk,N0 |⃗dk) over Nk. If k is large enough that there are likely no photons remaining
in the loop, we know that no more clicks are likely to be observed, and the experiment can be ended. One can
then produce an estimate Nest from P(N0 |⃗dn), either by choosing the value of N0 for which P(N0 |⃗dn) is
maximized (known as the maximum likelihood estimate, or MLE), or by choosing the mean value of N0

according to the distribution P(N0 |⃗dn).
The benefit of using such a posterior probability (or conditional probability) matrix is that it represents

the total information one can gain from the data at a particular time. The higher the correlation between N0

and Nk, the more that can be learned by knowing the number of photons currently in the loop. The matrix
also contains information about the number of photons currently in the loop, which allows the outcoupling
rate to be tuned to learn the most information overall.

Figure 2 visually displays an example posterior probability matrix P(Nk,N0 |⃗dn) during different rounds,
for Nmax = 5, N0 = 3. Initially, the posterior probability matrix is specified according to a uniform prior
probability distribution P(N0) =

1
6 , with all off-diagonal terms identically zero (since k= 0). In general, we

always know that Nk ⩽ N0, and as a result, the matrix is always upper-triangular. In the subsequent rounds,
the posterior probability matrix updates based on whether a detection has been made. After 40 rounds, the
number of photons estimated to be in the loop drops close to 0, and the distribution P(N0 |⃗dn) can be taken as
the final estimate. Two detector clicks were recorded in total (in rounds k= 2 and k= 15), and thus the final
estimate (sub-figure for Round 40 in the bottom row of figure 2) finds N0 = 2 to be the most likely number
of initial photons, followed by N0 = 3 and N0 = 4. The MLE of this example would thus be NMLE = 2, while
the mean value estimate is slightly greater (Nest ≈ 2.8). At this point, it is possible that there is still a photon
in the storage loop, but it is more likely that one was lost due to loop loss or detector inefficiency.

5



New J. Phys. 26 (2024) 043026 N M Sullivan et al

The second question we must consider is how one can optimally choose the outcoupling rate ϵk for each
round. This is more difficult to address, and depends on the capabilities of the setup. We can consider a
passive setup, in which the outcoupling rates are set before the measurement. On the other hand, we can also
consider an adaptive setup, in which the outcoupling rates are changed during the measurement based on the
detector results.

In either case, the ultimate goal of choosing the outcoupling rates is to maximize the expected
information gained about the photon number by the end of the experiment. If we only cared about
extracting the maximum information possible from a single detection round, we would adjust the setup such
that our expected variance in the distribution of N0 is minimized after that particular round. Depending on
the click result, the prior distribution would be partitioned into one of two distributions. In the ideal case,
one bit of information about the distribution would be gained, and thus each scenario would have equal
probability. One possible strategy, therefore, is to adjust ϵ each round such that the click probability is 50%.

However, this strategy does not work well in practice, for several reasons. If the per-round click
probability is made to be as high as 50%, then many of those clicks will consist of more than one photon
hitting the detector. Since our detector cannot distinguish between one or more photons, these extra photons
are lost, and contribute to a higher variance in the posterior distribution. Furthermore, because we have
multiple rounds to detect photons, we need to account for the photons lost within the loop, which could
have been used to gain more information at a later point in the experiment. Therefore, we must consider not
only the information gained during any given round, but how that choice would affect the information that
can be gained in later rounds.

One way to quantify the information gain is through the Kullback–Leibler (KL) divergence of the
posterior distribution of N0 against the priors we assign to N0 [40]:

IG,k = DKL

(
P
(
N0 |⃗dk

)
||P(N0)

)
=
∑
N0

P
(
N0 |⃗dk

)
log

P
(
N0 |⃗dk

)
P(N0)

 .
(10)

Although the KL divergence is more properly used as a way of quantifying the divergence between the
true probability distribution and a model, it is appropriate here because the distribution P(N0 |⃗dk) is usually
much closer to the true distribution than P(N0). Similarly, one way to quantify the loss of information
through inefficiencies is due to the change in information about N0 available to learn based on the number
of photons remaining in the loop. Specifically, we quantify the available information as the expected value of
the KL divergence between P(N0|Nk, d⃗k) and the initial distribution of N0:

IA,k =
∑
Nk

P
(
Nk |⃗dk

)
DKL

(
P
(
N0|Nk, d⃗k

)
||P(N0)

)

=
∑
Nk,N0

P
(
Nk |⃗dk

)
P
(
N0|Nk, d⃗k

)
log

P
(
N0|Nk, d⃗k

)
P(N0)


=

∑
Nk,N0

P
(
Nk,N0 |⃗dk

)
log

 P
(
Nk,N0 |⃗dk

)
P
(
Nk |⃗dk

)
P(N0)

 .

(11)

The available information thus represents maximum information that one could possibly learn about N0

after a certain number of rounds. The expected value of IA,0 (available information before the start of the
experiment) is simply the Shannon entropy of the prior distribution P(N0), while IG,0, (the information
gained), will be precisely 0, because no detector result will have been recorded. Assuming we allow the
experiment to run long enough that the photon survival probability is very small, then at the end of the
experiment, Nk = 0 with 100% probability, so the available information and the information gain will be
equal. The goal of choosing the outcoupling rates is for this value (IG,R = IA,R) to be as high as possible by the
end of the experiment, where R is the total number of rounds.

In the passive case, one must have a good idea of N0 initially, to properly choose the outcoupling rates. If
the outcoupling rates are too small, most of the photons will be lost to the intrinsic loss within the loop, and
not as many photons will be detected by the SPD, ultimately decreasing the overall efficiency of this approach.
With many photons lost in the loop, the available information is correspondingly degraded because we do
not know exactly how many photons were lost. On the other hand, if the outcoupling rates are too large, then
the detector will be saturated on most rounds, also resulting in undetected photons. Only for a small range of
N0 will the photon number estimate be optimal relative to the fixed imperfections of the apparatus.

6
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In the adaptive case, the requirement of our initial knowledge of N0 is somewhat relaxed. This is because,
if a large fraction of the detection rounds produce clicks, the outcoupling rate can be reduced to store the
photons for longer in the loop, while if a large fraction of the detections do not produce clicks, the
outcoupling rate can be increased to send more photons to the detector.

To properly choose the outcoupling rates in the adaptive setup is a subtle matter. One must first decide
on a prior probability distribution P(N0), and update the posterior probability P(Nk,N0 |⃗dk) after each round
k. Then, based on this posterior probability, one must choose the appropriate value of ϵ to maximize the
expected information gain in the next round, taking into account the information lost in the loop. Since it is
inevitable that some information is lost, we would like to optimize the ratio of the information gained to the
information lost, so that we gain the most information possible during the entire experiment. Thus, in round
k we would like to choose ϵk such that: ∣∣∣∣∣ ⟨IG,k⟩− IG,k−1

⟨IA,k⟩− IA,k−1

∣∣∣∣∣ (12)

is maximized for our choice, where ⟨·⟩ here denotes the expected value, given current knowledge.

3. Methods

In this section, we describe the details of how the simulations were performed, based on the mathematical
background introduced in the section 2. Additionally, we introduce and discuss the metrics we use to
evaluate and compare the performance of the passive and adaptive methods. All variables and symbols
introduced in this section are enumerated in table 3 of appendix B.

As described in the section 1, the loop-based PNR detector we simulated consists of a fiber loop with
efficiency η, and a detector with efficiency γ and dark count rate ν. Additionally, the outcoupling rate ϵ is
allowed to vary between rounds, so that ϵ= ϵk during round k. First, we fix the initial number of photons N0

that are input into the setup, and an initial probability distribution P(N0) is chosen, reflecting our belief of
the input photon distribution. For all of our simulations, we use a uniform distribution from 0 to Nmax

photons. Next, for each round, the probability of a click result with some number of remaining photons in
the loop, P(Nj+1,dj+1;Nj), is calculated from (7). A result is chosen with probability given by this
distribution, and the click result is then used to determine the updated Bayesian probability distribution
P(Nj+1,N0) from P(Nj,N0). The experiment is continued until the estimated number of photons remaining
in the loop is below some threshold Nt (for example, Nt = 0.5). If we assume that loop inefficiency is the

dominant form of loss, then we can assume this is true after approximately ln(Nmax/Nt)
1−η rounds. Alternatively,

the current belief matrix can be used to determine when the estimated number of photons remaining is
below Nt. The final distribution gives our estimate of the initial number of photons that have been fed into
the setup.

The most important parameters to vary are the initial number of photons N0, the loop efficiency η and
the detector efficiency γ. The typical values chosen for these physical parameters in the simulation are
motivated by the performance specifications of real-world devices. The performance of the estimator over
different initial photon numbers determines the dynamic range of the setup, while the loop efficiency and
detector efficiency both have important effects on the estimate uncertainty and error. The number of useful
rounds and the best outcoupling rate are also strongly determined by loop efficiency and detector efficiency,
while the dark count probability ν is generally small enough to not have a large effect.

During each round, we are free to adjust the value of ϵ according to some strategy or algorithm decided
beforehand. We consider both a passive approach and an adaptive approach, as discussed in the sections 1
and 2. In the passive approach, the outcoupling rate ϵ is kept constant and chosen before the simulation, so
each Bayesian update matrix R will be identical and can be precomputed, which has the benefit of speeding
up the computations. For the adaptive approach, the value of ϵk is chosen in real time using the analysis of
the detector results. In this case, the current belief distribution must be used to estimate the number of
photons in the loop. Then, ϵk can be chosen in such a way to maximize the ratio between the expected
information gained and lost due to this choice (see equation (12) in the section 2), in order to maximize the
total information gained about the initial photon number in the course of the entire experiment. As an
illustration, the outcoupling rate for the simulation depicted in figure 1 begins at ϵ≈ 0.04, then dipping to
ϵ≈ 0.02 as information is gained about the incident photon number, before rising sharply to unity as the
number of photons in the loop decays to zero. This is typical of the evolution of the outcoupling rate for
other incident photon numbers and simulation parameters.
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We end the simulation with the click record, the Bayesian belief matrix, and the actual number of
photons in the input. Additionally, the history of the Bayesian belief matrix can be recorded, if desired. By
repeating this simulation over many trials (Ntrials = 1000), we can determine the performance of each
strategy for choosing the outcoupling rate. The quantities of note for each specific trial are the estimated
initial number of photons Nest =

∑
N0

N0P(N0), the estimated variance from Bayesian analysis,
Varest =

∑
N0
(N0 −Nest)

2P(N0), and the MLE NMLE = argmaxP(N0).
Next, by analyzing many trials, we can determine the mean photon estimate ⟨Nest⟩, the mean estimated

variance ⟨Varest⟩, the variance of estimates Var(Nest) = ⟨(Nest −⟨Nest⟩)2⟩, and the mean square error (MSE)
in the photon estimate ⟨(Nest −N0)

2⟩, where ⟨·⟩ denotes the average over all trials. Since the random trials are
a representative sample of the space of possible outcomes, these sample means closely approximate a proper
average over all possible outcomes. If the estimator is unbiased, the statement ⟨Nest⟩= N0 must be satisfied
for all N0. In this case, the MSE would be equal to the variance of estimates Var(Nest). However, for a biased
estimator the MSE will always be larger than Var(Nest), and will be a better measure of the estimate accuracy.

The primary quantities we use to compare the approaches are the MSE, as well as R, the mean number of
rounds needed until the estimated number of photons remaining in the loop is below the threshold Nt = 0.5.
These quantities serve to measure the accuracy and repetition rate at which the detection process can be
performed. These serve to compare the adaptive and passive approaches when the experimental parameters
(η, γ, and ν) and the initial photon number N0 are fixed.

Additionally, the MSE is compared against the shot-noise limit of a photon source with Poissonian
statistics, where the variance satisfies Var(N0) = ⟨N0⟩. For applications in quantum-enhanced metrology, the
readout noise often has to be much less than the shot noise to attain an metrological advantage from the use
of nonclassical states of light. Thus, although the incident Fock states considered here have no inherent shot
noise, it is useful to compare the detector’s MSE to the shot noise limit.

It is helpful to consider the optimal performance that a loop-based detector could theoretically achieve,
given a loop efficiency η and detector quantum efficiency γ. If we only consider detector efficiency and loop
efficiency, the total efficiency associated with the kth round detector bin is γηk. That is, if one photon is sent
into the storage loop with no outcoupling, and the loop outcoupling switched on completely after the kth
round, then the total probability of this photon being detected is ⟨nk⟩= γηk. According to binomial
statistics, the variance of this detection result will be Var(nk) = γηk(1− γηk).

The optimal loop-based detector for N0 incident photons can thus be modeled by a collection of
detectors with efficiencies γηk, where exactly one photon is sent to each of the first N0 detectors. Clearly, this
cannot occur in a real loop-based detector where multi-photon events are unavoidable, but this can
nevertheless be used to gauge the performance of the adaptive and passive approach estimates. Given N0

incident photons, the number of clicks n will have mean and variance as given below

⟨n⟩=
N0−1∑
k=0

γηk

= γ
1− ηN0

1− η

Var(n) =
N0−1∑
k=0

γηk
(
1− γηk

)
= γ

1− ηN0

1− η
− γ2 1− η2N0

1− η2
.

(13)

Suppose we use an estimator Nest that is unbiased for any input photon number N0. Then ⟨Nest⟩= N0.
We can approximate the variance in this estimator by simply scaling the variance in the number of clicks by(

N0
⟨n⟩

)2

Var(Nest)≈
(
N0

⟨n⟩

)2

Var(n)

= N2
0

(
1− η

γ (1− ηN0)

)2

×
(
γ
1− ηN0

1− η
− γ2 1− η2N0

1− η2

)
= N2

0
1− η

1− ηN0

(
1

γ
− 1+ ηN0

1+ η

)
.

(14)

For N0(1− η)≪ 1, this has the form Var(Nest)≈ N0(
1
γ − 1), while for N0(1− η)≫ 1, this can be

approximated by Var(Nest)≈ N2
0(1− η)( 1

γ − 1
1+η ). This conforms to the intuition that the detector
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Figure 3. Sample evolutions of the initial photon number estimate using the passive (constant outcoupling, ϵ= 0.02) and
adaptive strategies illustrates that the adaptive strategy is capable of producing a more precise estimate in fewer rounds. The mean

estimate (blue line) is displayed overtop with a plot of the posterior probability P(N0 |⃗dk). Due to stochastic effects in the detector,
estimates from a single detection such as these are not always accurate, but are unbiased on average over many trials. The
simulation had initial photon number N0 = 40, and parameters γ= 0.9, η= 0.99 and ν = 1.0× 10−6. With these parameters,
the passive approach has bias ⟨Nest −N0⟩ ≈ 1.7 and MS error ⟨(Nest −N0)2⟩ ≈ 43, while the adaptive approach has bias
⟨Nest −N0⟩ ≈ 1.4 and MS error ⟨(Nest −N0)2⟩ ≈ 35.

efficiency is more important for small numbers of photons, while loop efficiency has greater importance for
large photon numbers. Although this performance is clearly not possible in a real experiment, it represents a
limit on the resolution possible with loop efficiency η and detector efficiency γ, and a benchmark for the
adaptive strategy.

4. Results

Below, we compare the merits of the adaptive and passive methods for various outcoupling rates, both
during individual trials and in aggregate performance. For reference, we first show a plot of the estimates of
N0 associated with a representative experimental trial. On the left side of figure 3, we show how the estimated
number of initial photons (using the mean estimate) evolve for a passive trial with N0 = 40 initial photons.
For comparison purposes, we choose the best-performing passive approach for these experimental
conditions, with outcoupling rate ϵ= 0.02, as discussed later. This is overlaid on a heatmap plot of the
posterior P(N0 |⃗dk). Initially, the estimate of N0 varies quite quickly as many photon detection events are
recorded, but changes become less frequent as the trial progresses and fewer photons remain in the loop. As
expected, the estimated initial photon count eventually settles to a value near N0. In estimates for the
number of initial photons, discontinuities occur in tandem with photon detection events. The estimate of N0

tends to decay in the rounds when no clicks occur, and jump noticeably whenever a click does occur.
Next, we compare this to a similar plot on the right side of figure 3 for an adaptive trial. Similarly, the

estimates fluctuate significantly in the beginning of the trial, before settling to a single value. One notable
difference between the passive and adaptive setups is the effective length of the experiment. In the passive
setup, the majority of the photons from the loop are detected within the first rounds, and thus most of the
information about N0 is acquired then as well. The remaining rounds are dedicated to measuring the last
remaining photons. In the adaptive setup, in contrast, all the photons from the loop are detected before
round 100, allowing the measurement to be completed in fewer rounds. Despite outcoupling all the photons
in a shorter number of rounds, the adaptive approach has lower outcoupling at the beginning so that the
number of instances where multiple photons are outcoupled is reduced. The ability to yield an estimate of
the initial photon number in a shorter time interval is important, since it reduces the number of photons
that can be lost to loop loss before being detected. This shorter duration is also beneficial because it allows
this architecture to perform PNR detection on a higher overall pulse rate.

Loop loss (η) is the single most significant contributor to uncertainty in the estimate of N0. In figure 4,
we have plotted the averaged Bayesian posterior distributions for N0, for actual initial photon numbers of
N0 = 10, N0 = 50 and N0 = 90 (with Nmax = 100), from simulations with different values of η. For η= 0.999,
the uncertainty is quite small, and below the shot noise for all three values of N0. For η= 0.99 and η= 0.9,
however, the uncertainty in the estimate becomes larger, and it becomes more difficult to resolve the true
value of N0.

It is also important to keep track of the information gain from the detections and the remaining available
information from the loop photons. These two quantities, as estimated during the simulation, are plotted in
figure 5 for an ensemble of passive and adaptive trials, along with their mean values. We compared the

9



New J. Phys. 26 (2024) 043026 N M Sullivan et al

Figure 4. Posterior probability distributions for N0, averaged over many trials, show that the estimate variance is highly sensitive
to the loop efficiency η. The simulation performed 1000 trials of the adaptive algorithm with parameters γ= 0.9 and
ν = 1.0× 10−6.

Figure 5. Comparison of passive-style (ϵ= 0.02, left plot), and adaptive-style (right plot) setups illustrates how an adaptive
strategy can extract the available information about N0 more efficiently than a passive strategy. The known information (green
lines) and available information (blue lines) for an ensemble of 100 trials are plotted in thin lines, while the means are shown with
the thick black lines. The simulations used initial photon numberN0 = 40, and parameters γ= 0.9, η= 0.99 and ν = 1.0× 10−6.

adaptive strategy to the passive strategy with ϵ= 0.02, which is the best-performing passive outcoupling rate
for N0 = 40. In both cases, there was initially log2(Nmax)≈ 6.6 bits of information available to gain from the
photons in the loop, and 0 bits of information gained. This is expected, since we are considering a uniform
prior distribution, in which every value of N0 is equally likely, and no detections have been made. Shortly
after, the available information drops sharply to∼3 bits after 20 rounds. Although only a few photons are
lost in these initial rounds, this is enough to make close photon numbers effectively indistinguishable. For
example, even if the expected number of lost photons is only one, the number of possible initial photons is
increased by a factor of 2, resulting in a loss of∼1 bit of information that was previously available.

However, the known and available information subsequently evolve differently in both the passive and
adaptive approach. While the two measures approach each other slowly in the passive case, as a result of the
slow decay of the expected remaining loop photons, the convergence is rapid in the adaptive case, where the
outcoupling is ramped up in the last rounds. To be more quantitative about this rate of convergence in the
simulation, note that while the adaptive measurement is essentially over after 60 detection rounds, at this
point in the passive measurement there are still approximately 0.5 bits of information that is available but not
yet gained. Since the variance of the photon number estimate approximately scales with the known
information as Var(Nest)∝ 2−2IG , the information not yet gained in the passive measurement corresponds to
a factor of 2 in the variance. This last information is only partially recovered in the following 50 detection
rounds as the known and available information converge exponentially, extending the length of detection
significantly. In contrast, note that in the adaptive approach, the rate of information gain is approximately
constant until the final photons leave the loop. This is a favorable feature for an adaptive approach to have,
since it implies that information is gained more consistently and efficiently throughout the experiment.

In figure 6, we compare the MSE of the passive and adaptive methods for various values of N0 and loop
efficiency η. We can see that while the passive methods can perform well for some values of ϵ and η, only the
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Figure 6. Comparison of the mean squared error (MSE) in the initial photon estimate Nest between four passive approaches
(constant outcoupling, thin colored lines) and the adaptive approach (thick red line), shows that the adaptive approach has a
consistently lower error than each passive approach, over the full dynamic range from 1 to Nmax = 100. Performance is worse in
every approach for lower loop efficiency η. The black line denotes the shot-noise limit MSE= N0, while the shaded area denotes
the theoretically optimal performance of an unbiased loop-based setup. The outcoupling probability ϵ took values from 0.01 to
0.1 for the passive approaches. The simulations used 1000 trials, with parameters γ= 0.9 and ν = 1.0× 10−6.

Figure 7. Comparison of the number of rounds needed for mean number of photons remaining in the loop (over many
realizations) to fall below the threshold Nt = 0.5 between four passive approaches (constant outcoupling, thin colored lines) and
the adaptive approach (thick red line), shows that while the adaptive approach does not consistently require a lower number of
rounds than the passive approaches, it needs fewer rounds than passive approaches that achieve a similar MSE (see figure 6).
Fewer rounds are required when the loop efficiency η is lower, because more photons are lost to loop losses. For the passive
approaches, the outcoupling probability ϵ took values from 0.01 to 0.1. The simulations used 1000 trials, with parameters γ= 0.9
and ν = 1.0× 10−6.

adaptive approach performs well over a large dynamic range of N0, while having steadily worsening
performance as η decreases. In the case of η= 0.99, the adaptive approach MSE remains below the shot noise
for a dynamic range up to an order of magnitude higher than any of the passive approaches.

One apparent problem of using the mean estimate of N0 is its tendency to induce biases when N0 is close
to 0 or Nmax. For N0 ≈ 0, this is due to the extreme skew of the distribution, featuring a maximum for
N≈ N0 but a long tail for larger N, causing the estimate to have a positive bias. Conversely, for N0 ≈ Nmax,
the approximately symmetric distribution profile is cut off for N> Nmax, causing the estimate to have a
negative bias. To mitigate the estimator bias in a setup, one should choose Nmax carefully so that it is unlikely
to create a cutoff effect. The MLE estimate does not suffer as acutely from these problems for smaller N0,
since it only depends on the distribution maximum, rather than the expectation value. However, it is also
affected when N0 ≈ Nmax, since the true maximum may be cut off in certain trials, causing a negative bias.

The effect of the loop efficiency on the total number of rounds needed to complete the measurement is
given in figure 7. As expected, when the loop efficiency is higher, the photons can be stored for longer,
resulting in more rounds (in some cases, more than 300) needed to outcouple all photons. In contrast, for
η= 0.9, neither the passive nor the adaptive approaches required more than 40 rounds. From these plots, and
comparing to the MSE plots in figure 6, we see that the adaptive approach often has the best combination of
low error and fast measurement, within any value of η. An additional observation is that the number of
rounds in the adaptive approach increases more rapidly than in a passive approach as a function of N0. This
is a consequence of the fact that in the adaptive approach, the average outcoupling decreases with N0.
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Figure 8. Comparison of the mean squared error and mean number of rounds needed to complete the measurement between the
passive approaches (thin colored lines) and the adaptive approaches (bold red points) shows that the adaptive approach
outperforms all corresponding passive approaches at each given value of N0 and η. For the passive approaches, the outcoupling
probability ϵ took values from 0.01 to 1.0. The simulations used 1000 trials, with parameters γ= 0.9 and ν = 1.0× 10−6.

Finally, we can combine the quantities of previous two plots into a single figure. In figure 8, we compare
the estimated MSE and mean number of rounds, between the adaptive approach (bold red points) and
corresponding passive approaches (thin colored lines) for various values of η and N0. The passive approaches
use a range of constant outcoupling values from 0.01 to 1.0. We see that the adaptive approach always
outperforms the optimal passive approach with respect to this combination of parameters. Although the
advantage is sometimes slight, this demonstrates the utility of the adaptive approach across a wide parameter
range. The adaptive scheme is consistently as good as the optimal passive scheme in terms of MSE for η close
to 1, as well as small photon number, while being 10%–20% faster to complete. However, for large photon
number and high loop loss, the adaptive scheme outperforms any passive scheme in MSE, while being
approximately two times faster than the optimal passive scheme.

5. Discussion

The adaptive loop-based PNR setup described here demonstrates performance advantages over alternative
multiplexing-based architectures, with respect to dynamic range, accuracy, and speed. In particular, the
results of the simulations over 1000 trials show that introducing adaptive feedback into the loop-based setup
improves the MSE of the estimate over a wide range of N0. Although the passive approach with some choices
of outcoupling rate ϵ can match the MSE of the adaptive approach over some N0, they generally perform
worse in another photon-number regime. For example, the η= 0.99 simulations in figure 6 show that the
ϵ= 0.1 passive approach matches the adaptive approach at low photon numbers (N0 < 10) but performs
much worse at larger photon numbers. The opposite effect occurs for the ϵ= 0.01 passive approach, which
performs best at larger photon numbers. This demonstrates the ability of the adaptive algorithm to extend
the dynamic range of the photon-loop PNR setup.

The performance of the adaptive loop-based detector is close to the theoretically optimal performance
for a loop-based detector, given a loop efficiency η and detector quantum efficiency γ, as described in
section 3. From figure 6, we see that for η= 0.999, the adaptive approach has mean-squared error only
reaching up to twice as large as the theoretically optimal MSE for an unbiased estimator, over a wide range of
N0. For lower loop efficiencies such as η= 0.9, the MSE of the adaptive estimate is a full order of magnitude
greater than the minimumMSE at low photon numbers. When loop losses are higher, we expect the dynamic
range of a detector to be reduced, so this worse relative performance at low photon numbers is to be
expected. Note that the MSE for both the adaptive and passive approaches dips below the theoretically
optimal performance for large N0. For N0 close to the matrix dimension Nmax, the posterior distribution
exhibits a cutoff, which biases the estimate and allows the MSE to become artificially reduced. In contrast,
the theoretically optimal estimate variance was calculated assuming the estimator is unbiased for all N0. This
artifact would disappear at these N0 if Nmax is extended to some larger number.

The adaptive setup also demonstrates advantages in detection speed. Although it does not consistently
complete detections in fewer rounds than all passive approaches, as seen in figure 7, it needs fewer rounds
than the passive approaches with similar performance. Figure 8 illustrates this trade-off in a more compact
way, and shows that the adaptive approach outperforms the best passive approach in this combination of
quantities, over a wide dynamic range. This is a significant advantage of the adaptive approach since
detection rate is often important for PNR detectors.
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The number of detection rounds needed for a single measurement in the time-multiplexing PNR
paradigm places constraints on the applications where a loop detector would be useful. For applications
where it is more important to make large number of measurements in a short period of time at the expense
of single-shot resolution, the information gains attained by storing photons in a loop may not be worth the
slower overall detection rate. However, for applications that require photon-efficient single-shot
measurements, this adaptive approach is capable of completing PNR measurements in a shorter time as
compared to a constant-outcoupling approach.

Numerous applications in quantum optics increasingly rely on photon-efficient measurements where
high loss and excessive measurement rounds are unacceptable. By performing single-shot PNR
measurements at a higher fidelity and faster rate than a similar passive approach, this adaptive approach may
demonstrate advantages in these applications. These include quantum enhanced metrology, which uses
non-classical squeezed light interferometry to attain an advantage, as well as homodyne tomography in the
mesoscopic regime, conditional state preparation in linear optical quantum computing, and secure quantum
key distribution.

The adaptive loop-based detector also compares favorably to other PNR detector architectures that use
multiplexing. For small photon numbers, the performance is essentially limited by the detector efficiency γ,
no matter which architecture is used, as long as the number of detector bins is sufficiently larger than N0.
However, the performance at higher N0 depends greatly on the details of the setup. For beam splitter-based
spatial multiplexing detectors, or time multiplexing detectors using beam splitters and delay lines, the
performance becomes limited by the number of detector bins into which the signal can be multiplexed. In
fact, to maintain a given photon number resolution, the number of detector bins must scale quadratically
with N0 [18]. In these setups, the number of detector bins places a hard limit on the dynamic range. In
contrast, the dynamic range of a loop-based detector is essentially limited by the loop efficiency η, with
estimate error increasing quadratically with N0 for N0 ≳ (1− η)−1.

However, there are challenges associated with implementing the adaptive approach in practice. Firstly,
the process of computing the optimal outcoupling ϵk for each round is fairly computationally demanding as
implemented here. Beginning from the probability matrix P(⃗dk), which is a square matrix of dimension
Nmax + 1, the expected information gain must be calculated for many potential values of ϵk. This involves
computing multiple matrix multiplications and many logarithms each round, and must be computed fast
enough to update the outcoupling in time for the next round. This would require a dedicated fast computing
module such as a field programmable gate array to store the probability matrix information, as well as receive
the detection results, perform the matrix calculations, and send the updated outcoupling value to the setup
in a very short time on the order of microseconds or hundreds of nanoseconds.

Alternatively, it might be useful to find a heuristic to determine the outcoupling that does not involve
such extensive calculations. One particularly economical method could involve updating the outcoupling
solely based on the current outcoupling value and the detection results, for example by incrementing or
decrementing the outcoupling by a fixed percentage depending on whether a click was recorded or not. In
such an approach, all the photon number estimation calculations would be performed after the fact. A
slightly more sophisticated technique would involve performing at least some of this estimation in real time,
but using a simpler algorithm to find an optimal outcoupling ϵk. Each of these approaches would have their
own tradeoffs in speed, computational resources, and accuracy, which should be evaluated with respect to
the particular loop-based detector implementation.

In addition to its good performance, the adaptive algorithm considered here has the advantage of having
a simple interpretation, as well as being suitable for any given prior photon number distribution. However,
since it employs a greedy local optimization of information gain to information loss in the next round (see
equation (12)), it is likely not globally optimal. In particular, it ignores the fact that most of the information
lost in the initial rounds of the experiment is unavoidable, regardless of the chosen outcoupling values. An
algorithm that accounts for how the outcoupling rate in a given detection round affects the global
information gain would likely have performance closer to the theoretical limit. However, this is more difficult
to achieve in practice, since one would need to estimate the total expected information gain during each
detection round, which is much more computationally demanding. Alternatively, one could use an algorithm
that attempts to maximize the expected number of detector clicks in the experiment, but this would also
likely be significantly more computationally demanding than a greedy optimization of information gain.

The most significant challenges associated with experimentally implementing this setup are the low-loss
fast switch and the low-loss storage line. As seen from the simulation results, the uncertainty in the results is
very sensitive to the loop efficiency η. Since every photon passes through the coupler on each pass, the loss
associated with the coupler is also a component of the loop efficiency. Thus, necessary for implementation
are both a high-efficiency storage loop with delay τ , and a low-loss coupler that allows for an adaptive
feedback response within τ .
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There are several options for implementing this setup. A free-space-to-fiber setup could be implemented
using an electro-optic modulator (EOM) as the fast switch, with free-space fiber couplers and a fiber
providing the delay loop. The typical loss in a low-loss fiber is approximately 0.2dBkm−1, so most of the loss
in the delay loop would result from insertion loss or losses associated with the fiber coupler. All-fiber options
consisting of an in-fiber EOM and coupler may be advantageous to reduce losses from free-space-to-fiber
coupling. Because the fiber can be effectively as long as desired, existing EOMs with switching rates of
around 1MHz can be employed using only a fiber of length 200m. Assuming between 10 and 100 detection
rounds, the total detection rate would be between 10 and 100 kHz, which is far below the rates of SNSPD and
HPD, but comparable with existing TES detection rates. However, insertion losses between the fibers
significantly contribute to loop losses on the order of 1 dB, corresponding to a loop efficiency of around 80%.
Since even a loop efficiency of 90% significantly limits the performance of a loop detector for more than
around ten incident photons, much lower loss fiber components would have to be attained for such a setup.

An all-integrated approach, in which the EOM, coupler, and fiber loop are integrated and manufactured
on a chip, could help to minimize the coupling losses between each component of the detector, but at the
disadvantage of short delay times and high on-chip losses, which would result in a relatively large loop loss.

Alternatively, a free-space delay line could be implemented using an optical cavity loop, together with a
bulk EOM functioning as the fast switch. This has been demonstrated using a polarizing beam splitter and
Pockels cell with delay time τ = 10ns and loop efficiency η= 0.988 in the context of single-photon
generation [41]. The limiting factor is the approximately 1MHz switching rate of the Pockels cell driver.
However, since most changes to the outcoupling rate are small from round-to-round, it is possible that the
Pockels cell can be driven at a faster rate with lower voltage for this setup. Since there exist SNSPDs with
around 90% efficiency and detection rates between 0.1 and 1GHz, the delay time of τ = 10ns is reasonable
for an adaptive PNR setup. Thus, assuming around 100 rounds per measurement, a free-space setup could
reasonably attain a 1MHz detection rate with around 99% loop efficiency, and thus a below-shot-noise
performance up to around 50 photons.

6. Conclusion

In this paper, we have considered the feasibility of an adaptive photon-counting scheme using a storage loop,
and introduced a method for systemically processing data from this kind of setup. The algorithm was
designed to choose the loop outcoupling that optimizes the ratio between the expected information gained
due to detections and the expected information lost due to losses, based on the sequence of recorded
detections. Through simulations of the loop setup (Ntrials = 1000) over a range of parameters and initial
photon numbers, we found that the adaptive approach achieved improvements in accuracy, dynamic range,
and speed relative to any passive setup with constant outcoupling.

In particular, the MSE of the adaptive approach’s estimate was equal to or less than that of any passive
approach, over a wide range of photon number from 0 to 100. No individual choice of outcoupling rate ϵ was
able to match the performance of the adaptive algorithm over this whole range. This demonstrates that
improvements in accuracy and dynamic range possible with an adaptive approach. Furthermore, in
comparison to the passive approaches that achieve a similar MSE, the adaptive approach required fewer
rounds to complete the detection. Since detection rate is often an important quality for PNR detectors, this is
also a significant advantage of the adaptive approach.

Despite the advantages, there are several limitations to address in this adaptive loop-based PNR detector.
Since both low loop loss and rapid feedback are vital to the detector’s performance, the most important
limitation for experimental implementation is the difficulty of designing or obtaining a rapid low loss
variable coupler. Additionally, the adaptive algorithm for choosing the loop outcoupling rate is likely too
slow and computationally intensive for the needed real-time adjustments. The use of a cutoff Nmax, which is
required for the Bayesian estimation calculations, also significantly affects the estimate when the photon
number is close to this cutoff.

With these limitations in mind, there are several possible extensions of this work that may be worthwhile
to investigate. For instance, although the adaptive algorithm used here shows performance advantages over
the passive approaches, it is unlikely to be the optimal approach. It would be interesting to determine if there
is an approach that has better performance, or performs as well with fewer computations, than the one used
here. Another possible extension to this work is analyzing the performance of such a setup for a detector that
already has some photon-number resolution. This could be accomplished either using another multiplexed
setup, or a detector that can resolve multi-photon events such as an SNSPD or TES. By providing more
information each round, the detector has an overall performance that is less dependent on the loop loss. As a
result, loop-based multiplexing can also be a simple way to extend the dynamic range of PNR detectors while
maintaining their high resolution.
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In many applications, one has some prior knowledge of the photon number distribution, which can be
used to improve the single-shot estimation of N0 and optimize the outcoupling rate by acting as a
non-uniform prior distribution for the adaptive algorithm. For example, if we know that the photon number
distribution is Poissonian, as occurs in a coherent state, the initial outcoupling rate can be optimized to
maximize the expected information gained for the known mean photon number. Alternatively, if we know
that the number of incident photons will likely be one of two discrete values N1 and N2, then the
outcoupling rates can be optimized by the adaptive algorithm to best distinguish between these two cases.

The loop-based PNR detector with adaptive feedback presented in this paper demonstrates improved
performance capabilities in comparison to other passive approaches. The flexibility of the paradigm,
illustrated by the potential extensions, may allow adaptive photon storage loops to be useful for many diverse
applications in optical quantum computing and metrology.
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Appendix A. Bayesian update probability calculation

Calculating the probability P(Nk,dk|Nk−1) involves multiple steps. First, we calculate the probability that Nk

photons remain, accounting for both loop efficiency (η) and the outcoupling rate (ϵk). This probability is
given by a binomial distribution:

P(Nk|Nk−1) = B(Nk;Nk−1,η (1− ϵk)) , (A1)

where B(k;n,p) is the binomial distribution function:

B(k;n,p) =

(
n

k

)
pk (1− p)n−k

. (A2)

However, to factor in the detection results, we need to find the probability that Nk photons remain in the
loop, and thatm photons are outcoupled from the loop to the detector. This probability is given:

P(Nk,m|Nk−1) = B(Nk +m;Nk−1,η)B(m;Nk +m, ϵk) . (A3)

Given thatm photons are sent to the detector, the probability that dk = 0 (i.e. no photons detected), is the
probability that no dark counts occur and none of them photons trigger the detector. Here, we are
additionally assuming that each of them photons interact with the detector independently of any others, and
no nonlinear effects occur. Under these conditions, this probability is:

P(dk = 0|m) = (1− ν)(1− γ)
m
. (A4)

Several useful binomial distribution identities include its behavior under convolution:

n∑
k=m

B(k;n,p)B(m;k,q) = B(m;n,pq) , (A5)

its behavior under multiplication by qm:

qmB(m;n,p) =

[
1− p

1− pq

]n−m

B(m;n,pq) , (A6)

15



New J. Phys. 26 (2024) 043026 N M Sullivan et al

and its behavior under transformation of probability p→ 1− p:

B(m;n,p) = B(n−m;n,1− p) . (A7)

Using these identities, we find that the total probability that dk = 0 is:

ρ(Nk;Nk−1,η, ϵk,γ,ν) =

Nk−1−Nk∑
m=0

P(dk = 0|m)P(Nk,m|Nk−1)

=

Nk−1−Nk∑
m=0

(1− ν)(1− γ)
mB(Nk +m;Nk−1,η)B(m;Nk +m, ϵk) .

(A8)

This simplifies to:

ρ(Nk;Nk−1,η, ϵk,γ,ν) =

Nk−1−Nk∑
m=0

(1− ν)

[
1− ϵk

1− ϵk (1− γ)

]Nk

B(Nk +m;Nk−1,η)B(m;Nk +m, ϵk (1− γ))

=

Nk−1−Nk∑
m=0

(1− ν)

[
1− ϵk

1− ϵk (1− γ)

]Nk

B(Nk +m;Nk−1,η)B(Nk;Nk +m,1− ϵk (1− γ))

= (1− ν)

[
1− ϵk

1− ϵk (1− γ)

]Nk

B(Nk;Nk−1,η (1− ϵk (1− γ)))

= (1− ν)(1− ηϵkγ)
Nk−1 B

(
Nk;Nk−1,

η (1− ϵk)

1− ηϵkγ

)
.

(A9)

Thus, the total probability for both the dk = 0 and dk = 1 cases is given by:

P(Nk,dk|Nk−1) =

ρ(Nk;Nk−1,η, ϵk,γ,ν) dk = 0

B(Nk;Nk−1,η (1− ϵk))− ρ(Nk;Nk−1,η, ϵk,γ,ν) dk = 1
, (A10)

where

ρ(Nk;Nk−1,η, ϵk,γ,ν) = (1− ν)(1− ηϵkγ)
Nk−1 B

(
Nk;Nk−1,

η (1− ϵk)

1− ηϵkγ

)
. (A11)

Appendix B. Variables and symbols

There are many variables and symbols used in this paper, so the purpose of this appendix is to enumerate the
meanings of all of them. Table 1 lists the basic parameters associated with the loop-based PNR detector
setup, as discussed in the section 1. Table 2 explains the variables and distributions relevant for the
simulation and Bayesian inference, as discussed in the section 2. Finally, table 3 lists the variables used to
analyze and compare the various passive and adaptive approaches, as discussed in the sections 3 and 4.

Table 1. List of all variables and symbols associated with the loop-based PNR detector setup in this paper.

Symbol Explanation

N0 Number of photons initially in the loop
Nk Number of photons in the loop after round k
η Loop efficiency
γ Detector efficiency
ν Detector dark count rate
ϵ Loop outcoupling rate
ϵk Loop outcoupling rate in round k (for adaptive setup)
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Table 2. List of all variables and symbols used to simulate the passive and adaptive approaches in this paper.

Symbol Explanation

dk Detection result in round k. If dk = 0, no click was recorded, and if dk = 1, a click
was recorded

d⃗k Series of detection results up to round k

P(Nk,N0 |⃗dk) Posterior probability of Nk photons being in the loop during round k, and N0

photons in the loop initially, given the detection results d⃗k
P(Nk, d⃗k|N0) Probability of yielding Nk photons in the loop during round k, and the detection

results d⃗k, given N0 photons initially in the loop
P(N0) Prior probability of N0 photons initially being in the loop
P(Nk,dk|Nk−1) Probability of yielding Nk photons in the loop during round k, and the detection

result dk, given Nk−1 photons in the loop in the previous round
ρ(Nk;Nk−1) Probability of yielding Nk photons in the loop during round k, and a ‘no click’

detection result, given Nk−1 photons in the loop in the previous round
B(k;n,p) Binomial distribution function with probability p, choosing k out of n objects

P(⃗dk) Matrix representation of P(Nk, d⃗k|N0)
R(dk) Matrix representation of P(Nk,dk|Nk−1)
DKL(P||Q) Kullback–Leibler (KL) divergence of the probability distribution P against the

probability distribution Q. Usually, P is taken to be the ‘true’ distribution, and Q
the model

IG,k Estimated information gained from experimental detection results d⃗k as of round k
IA,k Estimated information available to be learned based on the photons remaining in

the loop, as of round k

Table 3. List of all variables and symbols used to compare the passive and adaptive approaches in this paper.

Symbol Explanation

Nest(⃗dk) Estimated initial number of photons based on detection results d⃗k
Varest(⃗dk) Estimated variance in the initial number of photons based on detection results d⃗k
NMLE(⃗dk) Maximum likelihood estimate (MLE) of the initial number of photons based on

detection results d⃗k
⟨·⟩ Average of some quantity over many trials

Var(Nest) Variance of Nest(⃗dk) over many trials

MSE Mean square error Nest(⃗dk) relative to N0, over many trials
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[34] Řeháček J, Hradil Z, Haderka O, Pěrina J and Hamar M 2003 Multiple-photon resolving fiber-loop detector Phys. Rev. A 67 061801
[35] Tiedau J, Meyer-Scott E, Nitsche T, Barkhofen S, Bartley T J and Silberhorn C A 2019 High dynamic range optical detector for

measuring single photons and bright light Opt. Express 27 1–15
[36] Webb J G and Huntington E H 2009 Photostatistics reconstruction via loop detector signatures Opt. Express 17 11799
[37] Armen M A, Au J K, Stockton J K, Doherty A C and Mabuchi H 2002 Adaptive homodyne measurement of optical phase Phys. Rev.

Lett. 89 133602
[38] Andrea R R, Stefano O and Matteo G A P 2004 Photon statistics without counting photons Phys. Rev. A 70 055801
[39] Guido Z, Alessandra A, Maria B, Marco G, Marco G, Giorgio B, An-drea R and Matteo G A P 2005 Experimental reconstruction of

photon statistics without photon counting Phys. Rev. Lett. 95 063602
[40] Kullback S and Leibler R A 1951 On information and sufficiency Ann. Math. Stat. 22 79–86
[41] Kaneda F and Kwiat P G 2019 High-efficiency single-photon generation via large-scale active time multiplexing Sci. Adv.

5 eaaw8586

18

https://doi.org/10.1046/j.1365-8711.2003.07020.x
https://doi.org/10.1046/j.1365-8711.2003.07020.x
https://doi.org/10.1088/2399-6528/aa90ce
https://doi.org/10.1088/2399-6528/aa90ce
https://doi.org/10.1088/1367-2630/17/10/103044
https://doi.org/10.1088/1367-2630/17/10/103044
https://doi.org/10.1088/1367-2630/11/9/093038
https://doi.org/10.1088/1367-2630/11/9/093038
https://doi.org/10.1103/PhysRevA.99.043822
https://doi.org/10.1103/PhysRevA.99.043822
https://doi.org/10.1103/PhysRevA.106.013701
https://doi.org/10.1103/PhysRevA.106.013701
https://doi.org/10.1038/srep19489
https://doi.org/10.1038/srep19489
https://doi.org/10.1103/PhysRevLett.123.153604
https://doi.org/10.1103/PhysRevLett.123.153604
https://doi.org/10.3390/quantum1020015
https://doi.org/10.3390/quantum1020015
https://doi.org/10.1103/PhysRevA.75.062325
https://doi.org/10.1103/PhysRevA.75.062325
https://doi.org/10.1103/PhysRevA.79.043830
https://doi.org/10.1103/PhysRevA.79.043830
https://doi.org/10.1140/epjqt/s40507-021-00093-z
https://doi.org/10.1140/epjqt/s40507-021-00093-z
https://doi.org/10.1016/j.optcom.2019.01.081
https://doi.org/10.1016/j.optcom.2019.01.081
https://doi.org/10.1080/09500340600779579
https://doi.org/10.1080/09500340600779579
https://doi.org/10.1103/PhysRevA.101.013815
https://doi.org/10.1103/PhysRevA.101.013815
https://doi.org/10.1364/AO.57.006750
https://doi.org/10.1364/AO.57.006750
https://doi.org/10.1364/OL.28.002387
https://doi.org/10.1364/OL.28.002387
https://doi.org/10.1364/OE.21.000893
https://doi.org/10.1364/OE.21.000893
https://doi.org/10.1103/PhysRevA.102.052616
https://doi.org/10.1103/PhysRevA.102.052616
https://doi.org/10.1364/OL.28.000052
https://doi.org/10.1364/OL.28.000052
https://doi.org/10.1103/PhysRevA.67.061801
https://doi.org/10.1103/PhysRevA.67.061801
https://doi.org/10.1364/OE.27.000001
https://doi.org/10.1364/OE.27.000001
https://doi.org/10.1364/OE.17.011799
https://doi.org/10.1364/OE.17.011799
https://doi.org/10.1103/PhysRevLett.89.133602
https://doi.org/10.1103/PhysRevLett.89.133602
https://doi.org/10.1103/PhysRevA.70.055801
https://doi.org/10.1103/PhysRevA.70.055801
https://doi.org/10.1103/PhysRevLett.95.063602
https://doi.org/10.1103/PhysRevLett.95.063602
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1126/sciadv.aaw8586
https://doi.org/10.1126/sciadv.aaw8586

	Photon number resolving detection with a single-photon detector and adaptive storage loop
	1. Introduction
	2. Mathematical background
	3. Methods
	4. Results
	5. Discussion
	6. Conclusion
	Appendix A. Bayesian update probability calculation
	Appendix B. Variables and symbols
	References


