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Can a quantum advantage for imaging resolution be
realized with the help of quantum estimation theory?
We expect so, but we show that, presently, theoretical
tools are insufficiently developed to answer this
question for extended objects. Still, there is much
to be learned from the current state of the art.
In this review, we re-examine prominent results
in the literature and probe the limits of quantum
metrology in addressing imaging resolution. In
particular, we show that under restrictive but
well-defined conditions, any quantum advantage in
one-dimensional phase imaging appears to diminish
for increasingly detailed objects. We also show
that a previous attempt at tackling this question,
while incomplete, does predict an advantage for
single-molecule localization microscopy, although
this method may not be feasible in the near term.
As for experimental claims of Heisenberg-limited
imaging resolution, we briefly address the many
inherent difficulties in demonstrating that such a
thing has indeed been achieved.

This article is part of the theme issue ‘The
quantum theory of light’.

1. Introduction
The recent successes of quantum metrology in the
interferometric detection of gravitational waves [1]
and in coherent Raman microscopy of living cells [2]
naturally prompt the question of whether estimation
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approaches to other problems might yield concrete benefits. Largely due to its potential for
applications in biology [3], astronomy [4], and lithography [5], among other important areas,
the possibility of a metrological quantum advantage for imaging resolution has been a long-
pursued and frequently debated goal.

Here, we critically review some of the prominent existing work on this subject, with our
ultimate conclusion being that in its current form, quantum estimation theory, is insufficiently
developed for us to establish with complete confidence the existence of such an advantage.

This statement may surprise some researchers who are active in this field, due to several
theoretical and experimental works [6–8] that claim otherwise. To resolve these discrepancies,
we first turn to the treatment of imaging as an estimation problem and discuss why imaging is
not a problem of parameter estimation but of function estimation. Using an existing treatment
[9] of quantum estimation of uniformly continuous, one-dimensional phase functions, we show
why one might expect that any quantum advantage in reconstructing a pure phase object is
degraded for samples with increasingly fine details. In fact, for the most intricately detailed
objects, the advantage may be entirely negligible.

We then return to the claims of some existing works and show that by attempting to reduce
imaging resolution to a single-parameter estimation problem, one naturally constrains the types
of objects and the information about these objects that such a theory applies to. This, of course,
does not mean that single-parameter approaches are useless, but that they are best applied
to answering specific questions about specific classes of objects, rather than as a viable tool
for super-resolution imaging of arbitrary objects. As an example, we show that a previous
attempt at establishing a metrological quantum advantage for imaging resolution can only
currently be proven to apply to point-source localization. This capability leads naturally to
a quantum-enhanced version of single-molecule localization microscopy (SMLM) [10], which
can likely achieve super-resolved precision with lower photon fluxes than what can be done
classically. However, as we show below, a near-term implementation of this modality seems
unlikely.

We next discuss why experimental demonstrations of resolution enhancement in a quantum
imaging system do not rule out the possibility of a classical imaging system closely (or entirely)
replicating its performance. As a result, experimental studies that claim to achieve a Heisen-
berg limit (HL) for imaging resolution suffer from having been misled by single-parameter
estimation approaches that do not apply to their specific imaging systems and problems. We
emphasize that just because it may be possible to reproduce some of these enhancements
classically, this does not mean these results have no utility. Quantum imaging systems that
offer capabilities that are not currently available for classical systems have obvious benefits
in the near term and may inspire the development of classical techniques with superior or
complementary features in the future.

2. Imaging is not generally a parameter estimation problem
Researchers having some familiarity with quantum metrology [11,12] are likely acquainted with
the single-parameter standard quantum limit (SQL) and HL for the root-mean-square error
(RMSE) in the unbiased estimation of a given parameter, namely

(2.1)σSQL ∝ 1mN
(2.2)σHL ∝ 1mN ,

where N is the number of probes (in this case, photons) and m is the number of independentN-photon wave packets used to probe the sample. Another intuitive way of thinking about m is
that it is the number of ‘rounds’ in which the sample is interrogated by the N photons. These
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equations give the well-known scaling advantage in employing an N-photon quantum state
in estimating a single parameter (the HL scenario) over using the N-th order correlations of
classical light (the SQL scenario) of

(2.3)σHLσSQL
∝ 1N .

It is important to note that this is not a general result. The conventional formulation of the HL
requires assumptions about the nature of the interaction between the probes and the sample
under study, and about the evolution of the probes immediately after that interaction until a
measurement is performed. In particular, each of the probes is assumed to be independently
affected by the sample [13] and the evolution of the probes thereafter until they are detected is
assumed to be linear and free of decoherence [14]. We will revisit these assumptions and their
implications for imaging below.

As we mentioned, imaging is not generally a parameter estimation problem. In general,
by performing imaging, we wish to reconstruct an unknown two-dimensional function that
contains information about a sample. Examples of such a function include the variation in
the amplitude, phase, or retardance associated with the sample transmittance as a function
of the lateral spatial coordinates. Three-dimensional imaging is also of interest, but in some
sense is largely a separate topic. Unfortunately, a quantum theory of two-dimensional function
estimation does not yet exist. The next best option is provided in a recent work by Kura & Ueda
[9] in which they derived an SQL and HL for the estimation of a one-dimensional, uniformly
continuous phase function. Note that the authors did not include the effects of multiple rounds
of interrogation.

This study [9] is, however, limited in its ability to faithfully model phase imaging, as it
neglects the inherent attenuation of sufficiently high spatial-frequency components of the field
by either the finite aperture of the imaging optics or evanescent decay in the near-field of the
sample [15]. It also requires that the object lie entirely within the field of view of the optical
system. Note that these issues also occur in works that use the estimation of a discrete set of
multiple phases [16,17] as a model for phase imaging.

If we narrow the scope of our questions accordingly, we can use the results of [9] to obtain
an SQL and HL for one-dimensional quantitative phase imaging restricted to a single round
of interrogation (m = 1), and limited to objects that are easily resolved and lie entirely within
the field of view. Kura and Ueda find that the quantum advantage in employing an N-photon
quantum state scales with photon number as

(2.4)σHLσSQL
∝ N−q2/ 2q2 + 3q + 1 ,

where q is a parameter specifying the smoothness of the phase object, and the associated MSEs
have been averaged over its transverse spatial extent. The smoothness parameter q is defined
such that the magnitude of the coefficients of the Fourier series representation ϕk  of the phase
object must decay faster than k−q as k ∞. The domain of q is q > 0 with the limit as q 0
corresponding to an object that is not uniformly continuous (and possibly discontinuous) and
the limit as q ∞ corresponding to an object with no spatial dependence (i.e. it is constant).
Both of these asymptotic limits are worth examining.

As can be verified using equation (2.4), the latter recovers the result of single-parameter
estimation given by equation (2.3), as it should. The former, however, yields

(2.5)limq→ 0

σHLσSQL
∝ N0 = 1,

which is a much more surprising result. In the language of imaging, q is a measure of the finest
level of detail in a specified object, as it suppresses the contribution of high spatial-frequency
components to the phase object ϕ x . Smaller values of q indicate the presence of sharper
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features in the sample, while larger values indicate their absence. Equation (2.5) tells us that
as the level of detail in the object gets finer and finer, any quantum advantage in estimating it
becomes independent of photon number. This behaviour is demonstrated in figure 1, where
the right-hand side of equation (2.4) is plotted for several values of N. Note that in the
asymptotic limit represented in equation (2.5), it may be valid to replace the proportionality
with an equality, indicating that any quantum advantage in estimating the object has entirely
disappeared. For further details, we refer the interested reader to equations (5) and (6) in [9].

Essentially, this result implies that as we attempt to image samples in increasing detail, we
might expect any metrological advantage gained through the use of N-photon quantum states
to diminish accordingly. A generalization of this result to treat objects that cannot be easily
resolved by the imaging system is likely needed to ensure the universality of this conclusion,
but we should keep it in mind nonetheless, as it demonstrates that naive extrapolations of
results from single-parameter estimation to more complicated scenarios are limited in what
they can tell us. Note, however, that this still does mean that we can expect there to be
substantial advantages for the imaging of phase objects with a low or intermediate level of
detail.

We should also note that the scenario presented here is somewhat artificial, as quantum
imaging typically involves image formation from a large number (m≫ 1) of independentN-photon wave packets with N typically being quite small (and often just 2 or 3). Accordingly, a
generalization of the results of [9], which includes the effect of multiple rounds of interrogation,
would also be desirable.

3. The difference between localization and imaging
We now turn to claims of an SQL and HL for imaging resolution that are based on single-
parameter estimation theory. In particular, the work of Giovannetti et al. [6] may be the most
significant and representative of this approach. The authors suggest the existence of a general
quantum advantage for imaging resolution that can be achieved using Fock state illumination
and N-photon detection. In what follows, we show that their results instead only imply that forN > 1, a Fock state point source can be localized more precisely than a classical point source.
For readers lacking a substantial background in imaging, note that within two-dimensional and
paraxial treatments (such as that of [6]), the term ‘point source’ is frequently used to refer to an
object with a spatial extent small enough so as to be indistinguishable from (either a primary or
secondary) point source of electromagnetic radiation located in the focal plane of the imaging
system.

While this restriction limits the breadth of imaging scenarios in which their results are
applicable, it also establishes a quantum advantage for an existing class of super-resolution
techniques known as SMLM [10], two popular variants of which are stochastic optical recon-
struction microscopy and photoactivated localization microscopy.

The relevant imaging schemes discussed by Giovannetti et al. were stated to be governed
by resolution limits they refer to as the coherent and incoherent SQL (equations (3.1) and (3.2),
respectively) and the coherent and incoherent HL (equations (3.3) and (3.4), respectively). The
point-spread functions (PSFs) they derived for each case are given below:

(3.1)ℎCSQL r→ = ℎN r→ ,

(3.2)ℎISQL r→ = ℎ r→ 2N
,

(3.3)ℎCHL r→ = ℎ N r→ ,

(3.4)ℎIHL r→ = ℎ N r→ 2
,
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where ℎ r→  is the classical coherent PSF. Note that the terms ‘coherent’ and ‘incoherent’ here
refer to whether the object is illuminated with a coherent superposition or incoherent mixture
of N-photon Fock states. Note also that the only difference between the imaging system leading
to equations (3.1) and (3.2) and the one leading to equations (3.3) and (3.4) is the presence
of a photon-number-discriminating screen immediately in front of the imaging objective, a
difference we revisit below. Equation (3.2), the PSF said to be governed by an incoherent SQL, is
also the PSF for existing classical SMLM techniques in the absence of noise and the localization
precision of these techniques is also given by equation (2.1).

For the sake of illustration, the PSFs associated with what were termed the incoherent SQL
and HL are plotted for different values of N in figure 2. Recall that the numerical aperture of
the objective is defined as NA = nsinα, where n is the refractive index of the medium between
the object plane and the objective and α is the on-axis half-angle subtended by the objective
entrance pupil at the object plane.

To determine the photon-number scaling of equations (3.1)–(3.4), the authors determined
the radius at which the area under each PSF is 84% of the total over its entire domain. From
an estimation perspective, this is not the primary quantity of interest. Instead, we should treat
each PSF as a probability density function that describes the error in unbiased estimation of the
location of a point source in the object plane. Then, we can compute the RMSEs associated with
each and determine their photon-number dependence.

Before proceeding, it is important to note that a probability distribution must be non-nega-
tive for all values of its argument. This means that ℎCSQL r→  and ℎCHL r→  cannot themselves be
probability distributions, although their squared magnitudes can be, so that a single treatment
suffices for direct imaging in both the coherent and incoherent cases. This of course only makes
sense, as a point source must be coherent with itself.

If one treats the realistic situation of an imaging system with an unapodized circular pupil,
the integrals involved with computing the RMSE do not yield a closed-form expression. In
the theory underpinning SMLM, a commonly used simplification is the approximation of the
Airy pattern corresponding to ℎ r→ 2

 by a Gaussian distribution of equal volume (to preserve
normalization), an approximation we also make here.

Also worth noting is that two-dimensional point-source localization is intrinsically a
two-parameter estimation problem, the two parameters of course being the lateral spatial
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Figure 1. Photon-number scaling of the expected quantum advantage in one-dimensional quantitative phase imaging
restricted to the detection of a single N-photon wave packet (m = 1), as written in the right-hand side of equation (2.4).
The parameter q describes the finest level of detail present in the object, with smaller values indicating that it possesses
sharper features. The chosen photon numbers correspond to low and high light levels for typical imaging situations [18],
along with an intermediary value. Clearly, any appreciable quantum advantage in the precision of the estimation gained
through the use of N-photon quantum states vanishes for finely detailed objects.
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coordinates of the point source in the object plane. However, we can reduce this to two
independent single-parameter problems that can be solved sequentially without any loss of
generality. This is because the blurring actions along the two lateral dimensions (resulting from
the convolution of the object with each PSF) are uncorrelated, i.e. the covariance between x andy is zero.

With these specifications accounted for, we now proceed with the calculation. The classical
incoherent PSF ℎ r→ 2

 of a widefield two-dimensional imaging system can be approximated
with high accuracy by a Gaussian distribution

(3.5)ℎ r→ 2
≈ e− ρ2

2σPSF
2 ,

where σPSF is given by equation (11) in [19]. Note that this approximation is valid for scalar,
non-paraxial imaging and is therefore accurate at high numerical apertures as long as vectorial
effects play no significant role.

To show that directly imaging a Fock state point source with a photon-number-resolving
(PNR) image sensor achieves SQL-like precision for two-dimensional point-source localization,
we can use equations (3.2) and (3.5) to compute the image of a point source located at a lateral
position r→0 (ignoring magnification for simplicity) in the object plane

(3.6)ISQL r→ − r→0 = N
πσPSF

2 e−2N x − x0
2 + y − y0

2

2σPSF
2 ,

in which we have introduced a prefactor to ensure normalization. Treating equation (3.6) as a
probability distribution, we now see that our supposition that this estimation problem can be
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achievable for quantum point-source localization (orange), demonstrating the advantageous scaling with increasing photon
number. Note that for N = 1, the two curves lie exactly on top of one another, and that λ is the wavelength of the light.

6

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230332

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

26
 D

ec
em

be
r 

20
24

 



treated sequentially as two independent single-parameter problems was a good one. Clearly,ISQL r→ − r→0  is separable in x and y.
For the estimation to be unbiased, we must assume that the estimation strategy (e.g.

maximum likelihood estimation using data captured directly by an image sensor) introduces
negligible additional errors. At the expense of the field of view, this requirement can be met by
ensuring that the magnification of our imaging system along with the pixel pitch and fill factor
of the image sensor are such that the Nyquist–Shannon sampling theorem is satisfied (i.e. no
image pixelation occurs).

Assuming that this is so, the RMSE in estimation along both x and y is simply given by the
variance of ISQL r→ − r→0 . As equation (3.6) is again a Gaussian distribution, this yields

(3.7)σSQL = σPSF

2N ,

which clearly satisfies the proportionality in equation (2.1). This explicitly proves that the
precision with which a Fock state point source can be localized by directly imaging it with
a PNR image sensor is identical to that associated with the Cramér–Rao bound for classical
two-dimensional point-source localization, which was established with full generality in [20].
Note that this does not immediately provide any new experimental capabilities, as conventional
SMLM also achieves this precision (at least in the absence of noise, which we have also
neglected in our treatment).

Now let us proceed to the scenario that has been proposed for realizing a Heisenberg-like
scaling for imaging resolution. Giovanetti et al. [6] suggest the use of a two-dimensional
photon-number-discriminating screen, which would be placed immediately in front of the
imaging objective. Their derivation is only briefly sketched, so it is worth making the action
of the screen more explicit here. In our derivation, the screen is placed in the back focal plane
of the objective, but we expect that this difference with the treatment in [6] is immaterial. This
screen would coherently transmit N-photon wave packets if all N photons strike the same
location on the screen and completely reject the wave packet otherwise. We stress that such a
screen has never been demonstrated experimentally nor do we believe that it would be easy to
do so, although several works have suggested that it can, in principle, be constructed (see, for
example, [21], and references therein).

With the near-term feasibility of this approach momentarily sidelined, recall that by
assumption the light radiated by the point source is in an N-photon Fock state. Written in
the continuous mode representation, this state is

(3.8)Ψ = N : r→0 = a† r→0
N

0 ,

where again r→0 specifies the lateral position of the point source in the object plane. As the
creation operator a† r→, z  is a solution to the paraxial Helmholtz equation (see, for example,
equation (3.27) of [22]), its evolution in the Heisenberg picture is the same as the propagation of
a classical coherent field. This means that we may write the creation operator in equation (3.8)
as [15]

(3.9)a† r→0 ∝ d r→1 H r→1λf a† r→1 ei2πλf r→0 ⋅ r→1,

where f is the effective focal length of the objective, r→1 specifies the lateral spatial coordinates
in its back focal plane, and H r→1/λf  is the coherent transfer function dictated by its finite
aperture. Note that throughout this derivation, we drop constants of proportionality and simply
ensure normalization in the final result. Inserting this expression into equation (3.8) yields

(3.10)Ψ = ∏m = 1

N d r→m H r→mλf  ei2πλf ∑m = 1

N r→m ⋅ r→0 1: r→1, . . . , 1: r→N .
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The action of the photon-number-discriminating screen located in the objective back focal plane
can then be expressed as a projection defined by the operator

(3.11)PN = d r→p N : rp→ N : rp→ ,

where we have assumed that the transverse dimensions of the screen are larger than the spatial
extent of the field so that the integration bounds can be extended to infinity. This results in the
projected state

(3.12)ΨP = PN Ψ = d r→p H r→pλf ei2πNλf r→p ⋅ r→0 N : rp→ ,

where we have used the fact that HN r→/λf = H r→/λf  for a well-corrected (i.e. practically
aberration-free) imaging system [15]. We can now write the state of the field in the image plane
using the fact that

(3.13)a† r→p ∝ d r→1i a† r→1i e−i2πλf r→p ⋅ r→1i,
where r→1i specifies the lateral spatial coordinates in the image plane, and we have assumed that
the tube lens is a negative lens with the same effective focal length as the objective. Note that
this assumption is not required, and is merely used to ensure that the image is uninverted and
that the system possesses unit magnification for simplicity [15]. Inserting this expression into
equation (3.12) yields

(3.14)ΨP = d r→p H r→pλf ei2πNλf r→p ⋅ r→0 ∏m = 1

N d r→mi  e−i2πλf ∑m = 1

N r→mi ⋅ r→p 1: r→1i, . . . , 1: r→Ni
so that we can now compute the N-photon detection probability as

(3.15)

IHL r→ − r→0 = E† r→ N E r→ N
= d r→p d r→p1 H r→pλf H∗ r→p1λf ei2πNλf r→p1 − r→p ⋅ r→ − r→0

,

which is very nearly the desired result. Two final steps remain. First, let us make the substitu-
tion r→p1 = r→p0 − r→p and use the fact that H∗ r→p1/λf = H∗ − r→p1/λf  for a well-corrected imaging
system [15]. This procedure yields

(3.16)IHL r→ − r→0 = d r→p0 d r→p H r→pλf H∗ r→p − r→p0λf ei2πNλf r→ − r→0 ⋅ r→p0,

where the inner integral (within the square brackets) should be recognized as an autocorrela-
tion and the outer integral as an inverse Fourier transform. A straightforward application of the
autocorrelation theorem then yields our final result [15]

(3.17)IHL r→ − r→0 = ℎ N r→ − r→0
2
,

which is the same expression as equation (3.4). We may now make use of equation (3.17) and
equation (3.5) to compute the image of this point source, namely

(3.18)IHL r→ − r→0 = N2

2πσPSF
2 e−N2 x − x0

2 + y − y0
2

2σPSF
2 ,

for which we have again normalized the result. With the same assumptions in place to
guarantee an unbiased estimation, the RMSE is then
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(3.19)σHL = σPSFN ,

which satisfies the proportionality of equation (2.2). This seemingly indicates that direct
imaging of the discriminated Fock state point source with a PNR image sensor achieves an
HL for two-dimensional point-source localization. However, now we must revisit the limited
generality of the HL. As we mentioned above, the cause of limited spatial resolution in an
imaging system is the partial or complete loss of sufficiently off-axis plane-wave components
of the field. The losses inherent to the problem of imaging resolution imply that conventional
formulations of the HL, which rely on the decoherence-free evolution of the field prior to its
detection [14], may not be applicable at all. So we will exercise caution and simply refer to this
as quantum-enhanced point-source localization.

Let us assess exactly what has been demonstrated thus far. We have shown that there
is a quantum advantage for estimating the location of a single point source in the object
plane. Under what conditions can we generalize this result to the imaging of an extended
two-dimensional object? This is precisely where treatments such as that of [6] are unclear, yet it
appears that many researchers have assumed that this generalization is implicit in the form of
equations (3.1)–(3.4) anyway. Luckily, we need not reinvent a solution, as microscopists solved
this problem long ago for SMLM. The appropriate condition is a sparsity constraint, namely
that the object can be safely approximated as a collection of isolated point sources. In practice,
this means that the PSFs associated with each point source must be non-overlapping for each
recorded image, as otherwise, it would be impossible to unambiguously identify the number
of point-like objects in the scene. This principle is illustrated in figure 3. Unfortunately, most
objects of interest violate this sparsity constraint in spectacular fashion.

In SMLM, this issue is addressed by exciting only a subset of fluorophores during the exposure
time for a single frame and then performing post-processing on the results of many frames to
reconstruct a super-resolved image. The accompanying increase in the number of frames required
to form a single image means that SMLM is typically too slow to be compatible with the imaging
of dynamically evolving processes. One can imagine that incorporating Fock state sources, the
hypothetical photon-number-discriminating screen, and N-photon detection into SMLM may
prolong image acquisition times beyond the point of utility for most applications.

Also, while (inefficient) PNR image sensors already exist and are commercially available
[23], Fock state sources are much less well-developed [24,25]. Moreover, if we wish to localize
primary point sources that the object has been labelled with, this would require fluorophores
that emit light in a Fock state of definite photon number, which (to the best of our knowledge)
have not been realized for N > 1.

While difficult to achieve, the quantum-enhanced localization resulting from the proposal
in [6] likely allows one to achieve the same precision that classical SMLM techniques can,
but having illuminated the object with less intense light. This capability would certainly
be of use in applications suffering from photobleaching or photodamage. As we have just
mentioned though, this modality is largely predicated on the use of Fock state fluorophores
and a photon-number-discriminating screen, which do not yet exist, so we do not expect that
quantum-enhanced SMLM can be realized in the near future.

4. How useful are spatial mode decomposition approaches?
One well-known use of quantum metrology in imaging applications is a technique for
estimating the separation between pairs of mutually incoherent point sources known as spatial
mode demultiplexing (SPADE) [26,27]. This technique is, of course, inspired by the Rayleigh
two-point resolution criterion. While successful in solving the specific problem it was formula-
ted to address, SPADE has encountered difficulties in its generalization to scenarios that might
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enable a broader scope of applications. The main desirable generalizations would be to (i)
extended two- or three-dimensional objects and (ii) fully and partially coherent imaging.

In the first case, our comments in the previous section regarding the approximation of
an extended object as a collection of point sources likely still apply. For the time being, we
therefore expect that the advantages conferred by SPADE-like approaches will be limited to
extended objects that are sufficiently sparse so as to guarantee that the PSFs associated with
different points are non-overlapping. As with SMLM [10], this requirement can be enforced by
sequentially illuminating only a small portion of the object for each round of demultiplexing
and then reconstructing a final image afterwards. This, of course, comes at the expense of
imaging speed.

In the second case, it is important to note that two-point resolution criteria are object-
dependent measures of spatial resolution in coherent [28] and partially coherent (see subsection
7.5.1 of [29]) imaging systems. It is also prudent to recall that spatially incoherent illumination
is a limiting case of partial coherence that cannot be realized when employing high-resolution
imaging optics (see subsection 7.4.3 of [29]).

Taken together, these considerations imply that SPADE may only be of immediate utility in
the imaging of self-luminous or astronomical objects. The significance of the former is lessened
by the existence of several techniques for super-resolution fluorescence microscopy [30–32], but
the latter may present an opportunity for SPADE to make a near-term impact.

A suitable example along these lines is the problem of detecting an exoplanet in proximity
to a much brighter star. SPADE-like approaches that coherently reject the field in the image
plane associated with the star while retaining all other Zernike modes have been shown to be
optimal for detecting the presence of the exoplanet [33]. However, it is important to note that
this solution is not very different from the traditional approach to coronagraphy (see section 8.3
of [15]), which typically involves the partial rejection of the light coming from the star, and it
also does not seem to make use of any nonclassical effects. Perhaps the truly novel aspect is the
development of a new classical method for more elegantly implementing an intuitive solution.
Note that the necessary Zernike mode sorter for implementing the optimal solution of [33] has
only recently been demonstrated experimentally [34].

The issue regarding the classicality of spatial mode decomposition seems to be common to
all SPADE-like approaches. In fact, when SPADE was first introduced [26], it was noted that
if the light and photodetection processes are treated using a fully quantum theory, then the
classical and quantum Fisher information for the separation estimation problem are equal. It
would be interesting to see if this equality is maintained when the classical Fisher information
is evaluated in cases where the light is treated classically and the photodetection process
semi-classically. This may better inform the community as to whether this technique is truly a
quantum solution or merely quantum-inspired.

Figure 3. Simulated classical incoherent images of 6 (left) and 12 (right) equal-amplitude point sources. Note the difficulty
in distinguishing the presence of multiple faint, overlapping sources from the presence of one brighter one.
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5. Experimental claims of Heisenberg-limited imaging resolution
We know of two instances [7,8] in which experimental studies claimed to demonstrate
Heisenberg-limited imaging resolution for extended objects. Both instances relied on the
theoretical work of Giovannetti et al. [6] to imply that their measured factor of resolution
enhancement could not have been achieved using comparable classical illumination.

As was discussed above, the results in [6] establish a Heisenberg-like scaling for the
precision with which a Fock state point source can be localized, but it is still unclear whether
they yield a definitive quantum advantage for the resolution with which an extended object
can be imaged. All that is explicitly shown in [6] is that, in principle, one can use Fock state
illumination, photon-number discrimination, and N-photon detection to construct a quantum
imaging system that possesses the resolving characteristics of a coherent imaging system with
an effective wavelength of λ/N. What is not shown is that it is impossible for a classical system
to achieve the same performance.

Moreover, the existence of an HL for imaging resolution is never referred to in [6]. The
authors are much more cautious and simply state that ‘from general principles... one would
expect that also a 1/N Heisenberg-like scaling is achievable, i.e., a resolution... not achievable
with classical strategies’. Considering the four papers that are cited by the authors of [6] to
justify this statement, the general principles that they refer to are presumably single-parameter
quantum estimation theory [35,36], a suggestion by Kolobov that multimode squeezed light
can be used to improve the resolution of noise-limited (and not diffraction-limited) imaging
systems [22], and discussions in a review paper [37] concerning both quantum lithography [5]
and a theoretical work by Kolobov & Fabre [38].

Tackling each of these suggestions in turn, we first remind the reader that, as we mentioned
in the second section of this paper, imaging an extended object requires (at least) two-dimen-
sional function estimation rather than estimation of a single parameter. Principles that may
hold generally across single-parameter estimation strategies may not remain true for function
estimation (or even multiparameter estimation). As for the suggestion that multimode squeezed
light could improve the resolution of noise-limited imaging systems, this certainly could be
true, but it is unrelated to the treatment in [6] in which the presence of noise is not accounted
for.

Quantum lithography [5] suffers from the same drawback as the treatment in [6]: it is
not proven in [5] that the same enhancement cannot be observed in a classical system, and
several works (such as [39], for example) have explicitly suggested otherwise. Finally, the
proposal in [38] also does not establish that similar performance could not be achieved using
classical methods. Furthermore, it relies on an approach to super-resolution imaging known as
bandwidth extrapolation. This approach is known to be extremely susceptible to any non-zero
amount of noise and is widely considered to be impractical in a real imaging system (see
subsection 8.4.1 of [15], for example).

It is unfortunate that the results of [6] are often interpreted as establishing an SQL and HL
for imaging resolution for extended objects. This misunderstanding is perhaps the cause of the
experimental claims in [7] and [8] of Heisenberg-limited imaging resolution, claims that appear
to be unsupported in the absence of proof that such a limit exists. In particular, we should stress
that it is important to verify that the demonstrated spatial resolution of a quantum imaging
system is not only superior to that of a single classical system chosen for comparison, but also to
that of the best classical system that it could be compared to. The fact that we may not know a
priori what the best classical system is makes an unambiguous quantum advantage for imaging
resolution inherently difficult to demonstrate.
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6. Conclusion
Quantum metrology and estimation theory can be powerful tools for developing minimally
perturbative, high-precision measurement techniques, but only when applied appropriately.
In the context of imaging resolution, we have shown that a general purpose technique along
these lines remains out of reach for the time being and that if sufficient care is not taken
in interpreting results, subtle issues can lead to the appearance of nonclassical performance
enhancements in cases where none may actually be present.

To moderate this message, we have shown that while a pre-existing attempt at demon-
strating a more general quantum advantage for imaging resolution may have been incom-
plete, the suggested approach of that study [6] does yield an advantage for two-dimensional
point-source localization. This may eventually enable a demonstration of SMLM with super-
resolved precision at lower illumination intensities than is possible classically. The realization of
this capability, however, will require the development of both fluorophores with Fock state
emission and the photon-number-discriminating screen proposed in [6]. Alternatively, the
limited near-term feasibility of this approach indicates that a different method for achieving
this quantum enhancement would be highly desirable, so perhaps these conclusions will inspire
work in that direction.
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